

Author(s)	Dreesen, Robert F.; Hoover, Harry A.
Title	Control system identification through model modulation methods
Publisher	Monterey, California: U.S. Naval Postgraduate School
Issue Date	1963
URL	http://hdl.handle.net/10945/11863

This document was downloaded on May 22, 2015 at 08:26:38

Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

NPS ARCHIVE 1963 DREESEN, R.

CONTROL SYSTEM IDENTIFICATION
THROUGH MODEL MODULATION METHODS
ROBERT F. DREESEN
and
HARRY A. HOOVER

CONTROL SYSTEM IDENTIFICATION THROUGH MODEL MODULATION METHODS

オオオオオ

Robert F. Dreesen

and

Harry A. Hoover

CONTROL SYSTEM IDENTIFICATION THROUGH MODEL MODULATION METHODS

bу

Robert F. Dreesen

Lieutenant Commander, United States Navy

and

Harry A. Hoover

Lieutenant, United States Navy

Submitted in partial fulfullment of the requirements for the degree of

MASTER OF SCIENCE
IN
ELECTRICAL ENGINEERING

United States Naval Postgraduate School Montetey, California

CONTROL SYSTEM IDENTIFICATION THROUGH MODEL MODULATION METHODS

by

Robert F. Dreesen

and

Harry A. Hoover

This work is accepted as fulfilling the thesis requirements for the degree of

MASTER OF SCIENCE

IN

ELECTRICAL ENGINEERING

from the

United States Naval Postgraduate School

ABSTRACT

Adaptive control system techniques have been utilized to investigate identification of the dynamic equations of operating control systems. The identification has been achieved by using model modulation techniques to drive dynamic models into correspondence with operating control systems. The system identification then proceeded from examination of the model and the adaptive loop.

The model modulation techniques applied to adaptive control systems are breifly discussed. These techniques applied to simulation studies on an analog computer and a digital computer, and applied directly to a position servo-mechanism, are then discussed. The discussion presents data showing the accuracy of identification of the dominant characteristics of the dynamic equations when the order of the equation is either known or approximated. It was found that these dominant roots could be found within an average accuracy of 5% for both complex phase angle and undamped natural frequency.

The authors wish to express their appreciation to Professor Richard C. Dorf of the U. S. Naval Postgraduate School, for the suggestion of the model modulation method and for his assistance during this investigation.

Table of Contents

		page
Chapter I	Introduction	1
	General General	1
	Control System Identification	2
	Identification Methods	3
Chapter II	Model Reference Adaptive System	7
	Introduction	7
	Parameter Perturbation	8
	Model Output Modulation	10
	Application of Model Modulation	12
Chapter III	Identification Through Model Modulation	28
Chapter IV	Analog Computer Investigation	34
	Model Modulation Identification of an Equation of Known Order	34
	Equation Order Approximated	38
Chapter V	Digital Computer Simulation	59
Chapter VI	Actual Servomechanism Identification	72
	Introduction	72
	Discussion	77
Chapter VII	Conclusions and Recommendations	.84
	Conclusions	84
	Pecommandations	9.5

List of Illustrations

Figure		Page
1	Parameter Perturbation Methods	8
2	Parameter Perturbation Adaptive Loop	9
3	Model Modulation Adaptive Loop	10
4	Second Order Servomechanism	13
5	Modified Model Modulation Loop	14
6	Analog Computer Diagram For Single Parameter Adapting Servomechanism	16
7	Second Order Adaptive System Operation	17
8	Third Order System	19
9	Third Order System Adapting to Second Order Model	20
10	Control System Cascade Compensation Adaptation	23
11	Analog Computer Simulation of Compensation Adaptation	24
12	Compensation Adaptation Operation	25
13	Model Modulation with Model Adaptation	28
14	Schematic of Two Parameter Correction	32
15	Analog Computer Diagram of Two Parameter Model Adaptation	35
16	Corrective Parameter	36
17	Servosystem Identification, Two Uncertain Parameters	39
18	Location of Dominant Roots for the Actual and Identified Systems	48
19	Servo System Dominant Root Identification, Two Uncertain Parameters	5.5
20	Location of Dominant Roots for the Actual and Identified Systems	58
21	Transfer Function Format for Digital Computer Program	61
22	Digital Computer Program	63
23	Digital Computer Numerical Output	65
24	Digital Computer Graphical Output for Two Parameter Identification	6.7

List of Illustrations (continued)

Figure		page
25	Digital Computer Graphical Output for Integration in Adaptive Loop	70
26	Position Servomechanism	7 3
27	Position Servomechanism Block Diagram	74
28	Servomechanism Identification Block Diagram	7 5
29	Servomechanism Identification	78
30	Actual Servomechanism Identification, Location of Identified Dominant Roots	81

TABLE OF SYMBOLS

Cs	Control system output
C _m	Model output
C/R	Closed loop transfer function
G(s)	Open loop transfer function
K	Generalized gain
m _C	Corrective signal derived from output
m _c	Corrective signal derived from the derivative of output
p	Generalized s-plane pole
R	Input signal
(s)	Laplace variable
ζ	zeta - Damping factor of dominant complex roots
${\scriptstyle \omega}_{\scriptstyle n}$	Undamped natural angular frequency of dominant complex root

Chapter I

INTRODUCTION

General

The last three decades have seen control system technology grow from a series of rules of application to a full regime encompassing most of the disciplines of engineering. The study of control systems has progressed deeply into analysis and synthesis of linear and non-linear control systems. There are, additionally, offshoots of basic systems with most exhaustive methodology: examples are the sampled data, hybrid analog-digital and multi-loop self adaptive systems.

The problem of control system identification led to some of the original investigation in the control field. Despite the increase of knowledge in the field of control engineering, system identification has remained a major problem.

The intent of this project was to investigate a method of control system identification utilizing techniques from the growing technology of the self-adaptive control system. One restriction was laid upon the project at its inception. This was that the method of system identification remain independent of the system to be identified Ideally then, an operating system should be identified solely through examination of the input and the response. To this end a control system identifier has been modeled and tested on an analog computer, through digital computer analysis, and upon a position control system.

Control System Identification

The characteristics and performances of the fundamental components of feedback control systems are generally amenable to systematic analysis. The control system, when composed of these fundamental components, may be easily synthesized and analyzed. Components, however, when removed from the theoretical state do not exhibit the invariant characteristics attributed to them. Furthermore, control systems are often synthesized on the basis of transfer function manipulation. This synthesis occurs under the assumption of negligible loading of one component system by another. This assumption is too often fallacious. In either or both of these situations the control system engineer is confronted with a control system which does not conform to previous analysis. And if this analyzed control system is a portion of some larger process, it may be necessary to reevaluate the control characteristics and performance, in other words to identify the system.

In some extremely variant systems the processes of system identification are utilized to serve as controllers in a self-adaptive control system. The most notable of these cases are the self-adaptive control systems currently in use and being further developed for aircraft installation. The NASA X-15 is an example. In this installation the response characteristics are examined and the results are used to vary flight control loop gain to maintain near invariant control response. The equipment used for this process is quite complex, but is justified by the operating environment of the vehicle.

For less complex control systems or in less complex environments, the problem of control can be solved by more conventional means, without recourse to dynamic self-adaptive system technology. These less complex systems require accurate identification of the process dynamics. Once the transfer function of a process has been evaluated this evaluation can serve as a basis for design of the remainder of a system or for readjustment of the process through compensation techniques.

Identification Methods

Truxal writing in reference (1) has placed the methods of control system identification into four broad categories:

- a. Parameter identification.
- b. Frequency response methods.
- c. Impulse response methods.
- d. Direct evaluation of system differential equations of motion.

Some of the difficulties in one-by-one determination of model parameters have been mentioned. Additionally, this method is possible only when the detailed operation of a process is reducible to fundamental differential equations in which the primary parameters may be included and the negligible ones discarded. This ideal situation rarely exists for complex control of complex processes.

As frequency response techniques are well-known, a description of them has been omitted. These procedures are extremely important in general control design. This is the most common method of identifying the transmittive dynamics of a control process. Many working control systems however, cannot be subjected to variable frequency oscillations for reasons of system complexity, operating economy, or

because of the extensive time and effort required for determination of the gain and phase characteristics. Two additional problems occur. First, in some circumstances, frequency response testing should not be superimposed on regular operation, because testing would interfere with designed operation. Secondly, a working system is subjected not only to its driving input, but also to noise occuring during the operating process. The extraneous disturbances of normal operation would make the interpretation of frequency test results difficult.

The impulse response can serve to completely identify any linear time-invariant two port system. The various impulse response techniques are utilized in many of the more sophisticated adaptive control systems. Truxal has cited three primary techniques for measuring impulse response. The first and most direct method is to excite a system with an impulse and measure the response. Second, the system can be excited by a known signal. For an initially inert system, the impulse response g(t) can be determined from the input, f(t), and output, f(t), through the convolution integral

$$c_{(t)} = \int_{0}^{t} g(\tau) r_{(t-\tau)} d\tau$$
1.1

Finally the impulse response can be measured by application of a small random signal to the process. If white noise is used as the input, the cross correlation function between the output and the noise is the impulse response.

The attempt to utilize the impulse response in identification is complicated by three problems. Noise has a much more delerterious

effect on the output than in the case of frequency response tests. Non-linearities are much more difficult to detect than in frequency response tests. Finally the mechanization necessary to determine the impulse response is almost prohibitive for use in system identification. When the impulse response method is used in adaptive system control the engineer is generally interested not in the full identification, but in identifying only some characteristic of the response. Quantitative measurements are made to serve as sufficient identification to allow adaptive correction. As an example, the number of oscillations during a specific period of a system response would identify the impulse response. These approximations are not sufficient for full identification, however.

The evaluation of the differential equation for a linear process offers an additional method of identification. The differential equation of a process might be expressed as an equation of input $r_{(t)}$ and output $r_{(t)}$ in the following form:

$$\frac{dc''}{dt'} + \frac{a}{a} \frac{dc''}{dt''} + \cos + \frac{a}{dt} \frac{dc}{dt} + a_o = \frac{b}{a} \frac{dr''}{dt} + \cos + b_o r_o$$
1.2

The a_0 term may be evaluated from the nature of the zero frequency or steady state gain. If the order of the differential equation is known, and the nature of the right hand side is known, the other a_{N-1} coefficients may be evaluated by generalizations such as minimizations of square of the error e, where e is defined:

$$e = \frac{d^{N}}{dt^{N}} + \cos + a_{1}\frac{dc}{dt} + a_{0}c - b_{0}r$$
1.3

The a_{N-1} coefficients are evaluated through use of this error criterion by generation of successive differentiations of the response. Unfortunately, searching over an (N-1) space for a minimum is a problem of potential difficulty. General problems also arise in settling at local minimums and in error system stability.

Many of the problems of systematic determination of the differential equation coefficients are alleviated by the use of system-model reference. This is a natural variant to the adaptive control system technology. The exploitation of this method involves utilization of the difference between system and model response to the forcing input. This difference has been handled by several methods in present technology. In general self adaptive processes, the difference as operated upon by an adaptive technique is used to drive the system into operating correspondence with the invariant response of the model.

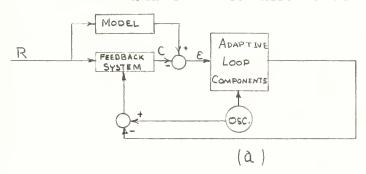
This investigation was based on a variation of this method. During this investigation adaptive techniques have been used to drive the model into operating correspondence with the operating system. The characteristics of the model differential equation have been modified by the adaptive loop. These characteristics then have been used to accurately define the coefficients of the system differential equation.

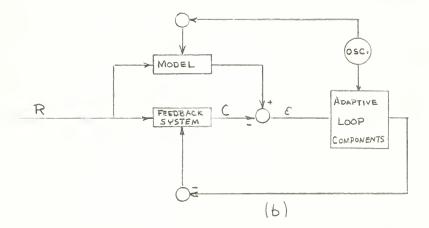
Chapter II

MODEL REFERENCE ADAPTIVE SYSTEMS

Introduction

A major advantage of the model reference adaptive system is that direct measurement of the operating system differential equation parameters is not required. This factor results in considerable economy in mechanization of the adaptive components. As previously mentioned there are in existence various methods of self adaptive control. However, in many of these systems the adaptive loop mechanization requires the assumption of the second order nature of the system. An example of this is Osder's system detailed in reference (1). For this system, the sign reversals in the output oscillations are counted and the count used to correct the second order zeta. Most of the impulse response self adaptive systems also require assumption of a basically second order system to keep the equipment within allowable limits. The model reference system relieves this restriction. The model reference adaptive system can be utilized for higher order systems about which the second order assumption is invalid. Additionally, current literature presents several examples in which model reference allows the control of several parameters within the operating system.

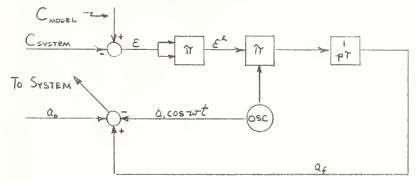

References (1) and (2) present several methods of model reference adaptive control systems which have been proposed or developed. The variants of these systems include the Ham-Lang conditional control system, which in analysis is passive adaptation through model reference.


The other extreme is perhaps, Braun's method, which utilizes an orthonormal spectrum analyzer to solve the identification problem.

Parameter Perturbation

Perhaps the most straightforward adaptive mechanization results from the use of model reference with perturbation techniques. McGrath, Rajaraman and Rideout in reference (3) have proposed and examined various parameter perturbation model reference schemes. Figure 1, taken from their discussion presents two variants of the parameter perturbation scheme.

Fig. 1
PARAMETER PERTURBATION METHODS



The adaptation processes in these systems are driven by the error, ε , between the model and system. This error is used to form a performance

criterion, which for this example was integral of error squared, $\int e^2 dt$. This criteria contains a component of the frequency at which a parameter of the system in Fig. 1(a) is being perturbed. The amplitude and phase of this component give the magnitude and sign of the signal obtained through perturbation and integration. This signal is then fed back negatively to reduce the error. The adaptive loop mechanization is illustrated in Fig. 2.

Fig. 2
PARAMETER PERTURBATION ADAPTIVE LOOP

For analog simulation electronic multipliers have been utilized for parameter correction insertion. In operating systems servo-multipliers could be utilized.

The system of Fig. 1(a) suffers from the disadvantage that the perturbation appears in the output. The system of Fig. 1(b) avoids this problem through model parameter perturbation. This second method, however, requires that the model be nearly the same form as the system. Both methods, moreover, require phase correcting networks to correct the phase shift between parameter perturbation signal in the model and the oscillator signal. Through utilization of further model forms with parameter perturbation the authors demonstrate that it is possible

to prepare a configuration which is both system and signal adaptive, using multiple models with perturbation of either model or system parameters. Rajaraman in a later article, Ref. 4, has shown the detailed operation of the signal and system adaptive process. In summary, this signal and system adaptive process requires two models and two adaptive loops. The two models are of different nature. The first is an ideal version of the process, and the second is of the same order as the process. The second model is optimized for the input by the first adaptive loop operating upon the difference between the output of the two models. The second adaptive loop causes system parameters to follow the optimized second model parameters, and at the same time corrects for disturbances.

Model Output Modulation

Dorf and Byers have shown the feasibility of the model reference self adaptive system using output modulation techniques. The analysis of the techniques and a discussion of experimental results are found in Ref. 5. They are briefly summarized here. Fig. 3 presents the block diagram of the system.

Fig. 3
MODEL MODULATION ADAPTIVE LOOP

In this adaptive loop, the output error is:

$$E_{(t)} = C_{s(t)} - C_{m(t)}$$
 $\left[1 + A \sin \omega_{m(t)}\right]$ 2.1

For this example error squared has been used as the criterion. Thus, after being shaped and demodulated a phase-sensitive d.c. signal is obtained. When this signal is subjected to integration and filtering, the open loop output of the adaptive circuit becomes:

$$A^2 C_m (C_m - C_s) t$$
 2.2

The adaptive circuit loop was closed by this signal being inserted into the system as a driving function, to correct a system parameter. The result of this multiloop circuit is a complex, non-linear system which has adaptive characteristics to maintain an approximately invariant system transfer function. In functional notation the system output might be described as a function of the following variables:

$$C_{(t)} = f(K_{Ad}, \omega_i, |R|, \tau_f, T, M)$$

 $K_{\Delta d}$ = adaptive loop gain

 ω_{i} = frequency of input signal

R = magnitude of input signal

 τ_f = filter network time constants

T = system transfer function, uncorrected

M = model transfer function

The adaptive loop filter was designed to filter out the normal system operating signals. The speed of adaptation depends partially on the filter transfer function. The gain and lag of the filter influence the magnitude of the adaptive response and the input signal contami-

nation. One important feature of this method is that an absolutely constant frequency oscillator is not required. The operation of the adaptive loop is not dependent upon frequency stability of the modulating frequency. Furthermore, as there are no significant time constants between modulation and demodulation, the frequency of modulation is limited only in bounds at the lower frequency by the necessity of being an order above the input signal frequency. Dorf and Byers further investigated a two parameter correction situation, driving one adaptive loop with output and the second adaptive loop with the derivative of output. In their example the system open loop transfer function was:

$$GS = \frac{K_1 w_N^2}{S(S^2 + RSw_N + w_N^2)}$$

The model open loop transfer function was similar. The first adaptive loop was driven by $\overset{\bullet}{C}_m$ and $\overset{\bullet}{C}_s$ to correct $(K_1 + \Delta K)$, the open loop gain. The second adaptive loop was driven by C_m and C_s to control the inner loop damping (2 ζ ω_n + Δ 2 ζ ω_n). The authors concluded that a two parameter self adaptive system of this kind was feasible. A major restriction was found to exist if the two parameters being adapted were not independent, and the adaptation would be successful only if the range of required adaptation was restricted.

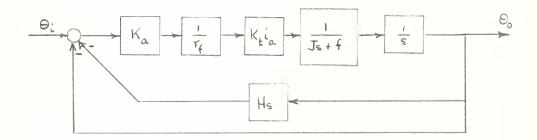
Application of Model Modulation

To verify the results of model modulation, and to obtain experience with the characteristics of the method, the method was simulated on a Donner 3100 analog computer. Initial investigation concerned

the use of a second order system with one variable parameter being adapted to follow a second order model. The model and the system were ordered for an open loop transfer function:

$$G(s) = \frac{w^2}{s(s+2Sw_n)} = \frac{100}{s(s+10)}$$

The parameter drift then is represented as

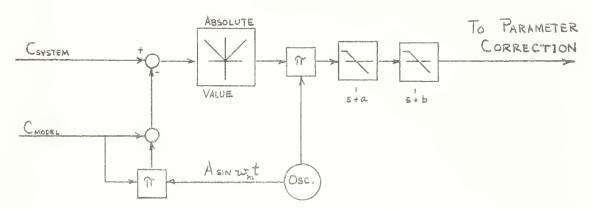

$$G(s) = \frac{w^2}{s(s+2Sw_n+n)}$$
 2.5

where n was a step parameter drift. The input was also of various wave forms of frequency less than the bandwidth. The adaptive system open loop is represented as:

$$G(s) = \frac{w_{N}^{2}}{s(s + 2 \int w_{N} + n - m_{c})}$$
2.6

where m_c is the correction derived from the output driven adaptive loop. This system might be considered to simulate a second order position servo as displayed in Fig. 4.

Fig. 4
SECOND ORDER SERVOMECHANISM

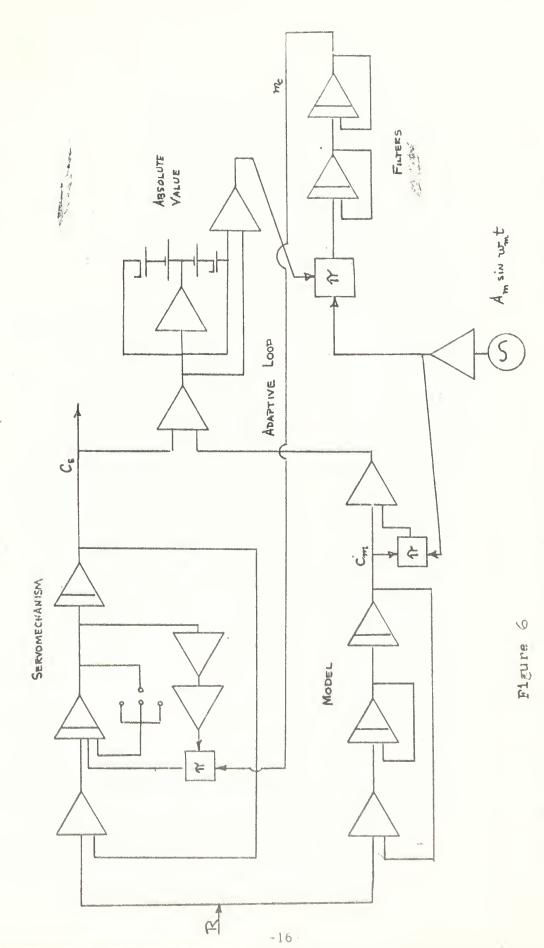


Constant Armature Current D.C. Motor Drive

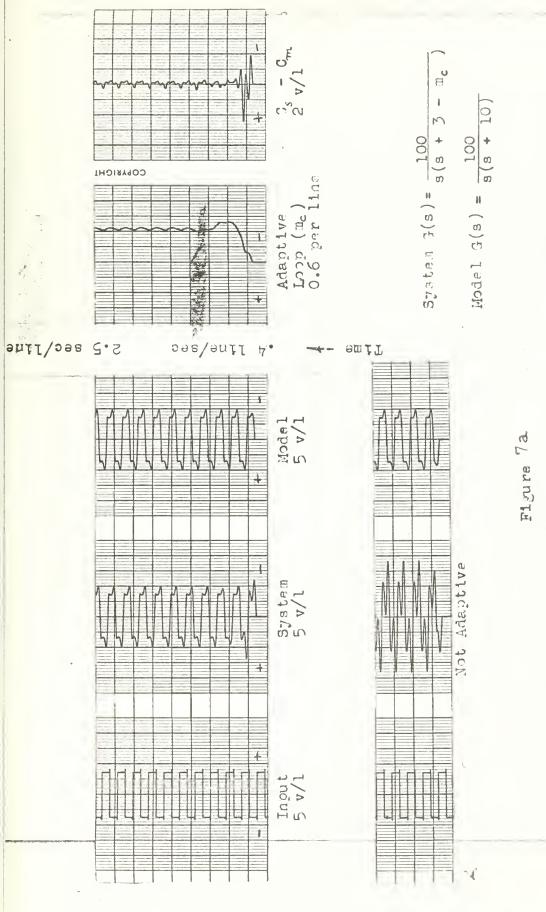
Thus the variable drift simulated a system with varying or unknown iriction(f), a system with constant gain but varying velocity error coefficient. The correction would be inserted by varying tachometer gain feedback magnitude.

For operational simplicity the error criterion was altered from the integral of error squared, ISE, to the integral of absolute error or TAE. Additionally, the modulation and demodulation was accomplished through use of electronic multipliers. Incidental noise problems with these multipliers was such that the pure integration followed by a filter was removed from the adaptive loop, and instead a double filter network substituted. The alteration is shown symbolically in Fig. 5.

Fig. 5
MODIFIED MODEL MODULATION LOOP

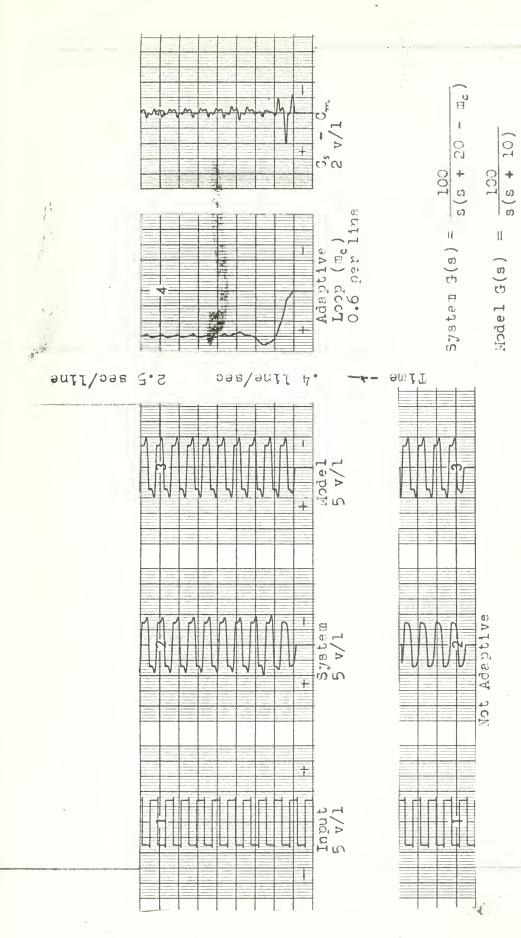

Satisfactory results were achieved with this circuit with the filter break points a = .1, and b = .1. The full computer diagram is shown in Fig. 6. The value of the gain of the adaptive loop for the circuit of Fig. 6 was 3. Fig. 7 presents the output data for this same circuit, illustrating adaptation for various parameter drift conditions

Additional investigation was made of the control of a third order system with one variable parameter by a second order model. The third order system investigated open loop transfer function was

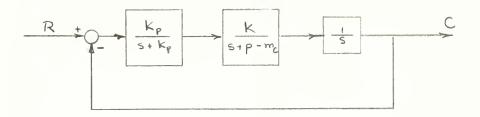

$$G(s) = \frac{K_{p} \quad 100}{s \left(s + K_{p}\right) \left(s + 10 + n - m_{c}\right)}$$
 2.7

The model utilized was that of the previous example. The analog computer setup was that of the transfer function format similar to Fig. 6, with an additional function $\frac{K_p}{s+K_p}$ installed. The adaptive

loop was unchanged. This system then simulated a third order control system as illustrated in Fig. 8.



Analog Jonouter Disgram for Single Parameter Adapting Servomechanism


Second Order System Adapting from Zeta = .15 to Zeta ≈

0.0

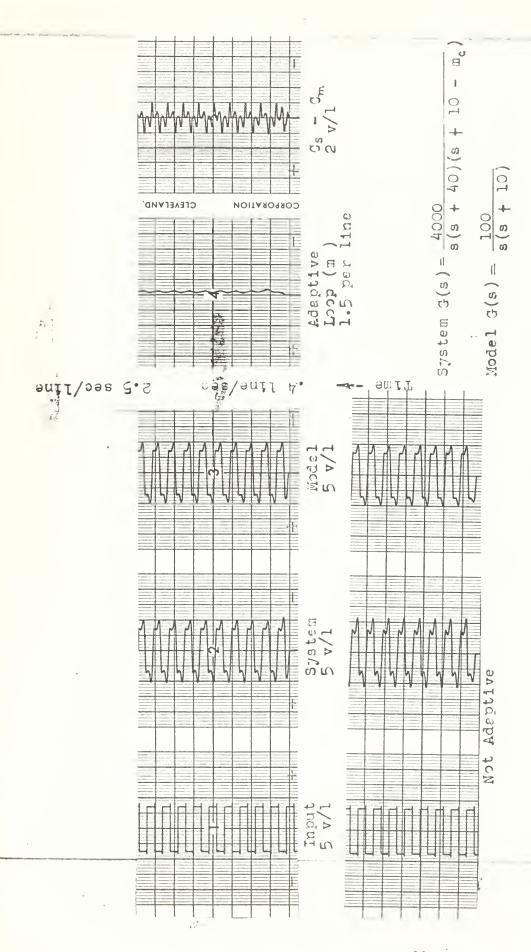
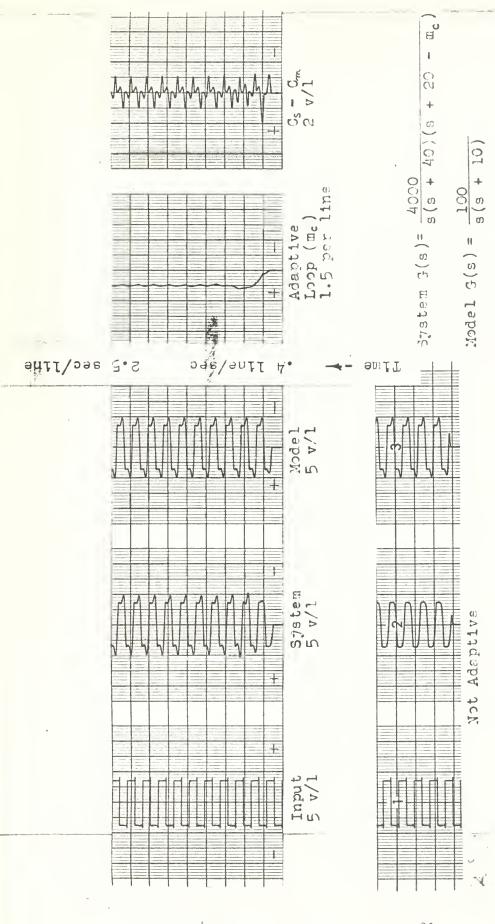
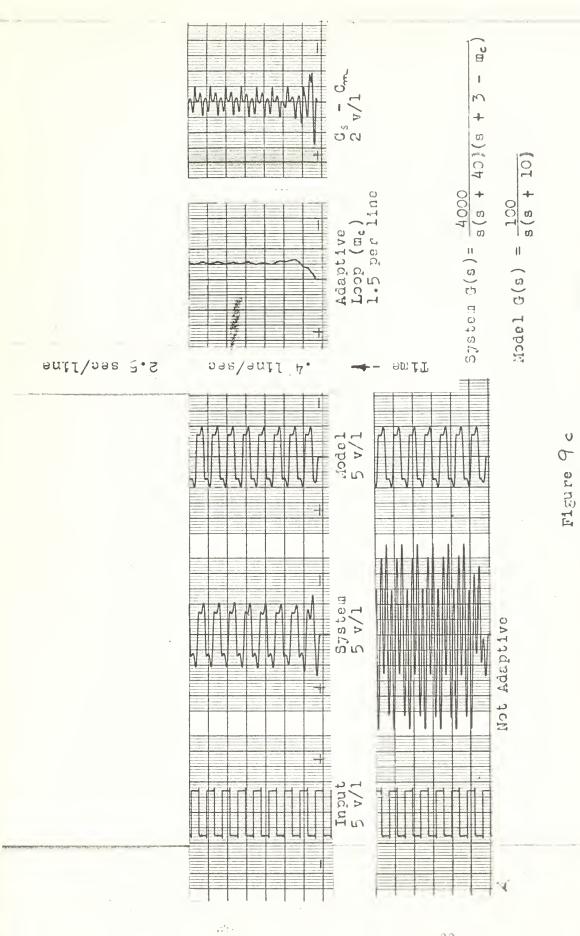

0.5 1.0 to Zeta≈ Second Order System Adapting from Zeta =

Fig. 8
THIRD ORDER SYSTEM

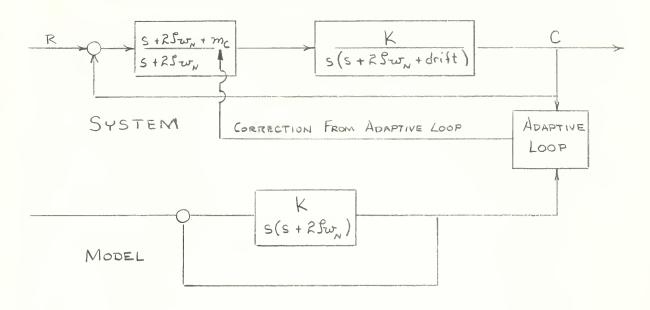

For this situation the variable parameter simulated would be p, with the correction being inserted through a small servo varying m $_{\rm c}$. The adaptation was satisfactory for K $_{\rm p}$ = 40, when p = 10. Adaptability became difficult for K $_{\rm p}$ < 40 for large parameter shift. Fig. 9 presents the output data for this circuit for a representative K $_{\rm p}$ = 40, under various parameter drift conditions.

As a final illustration of the model modulation method, cancellation techniques were used for system control. The process is best illustrated in Fig. 10.

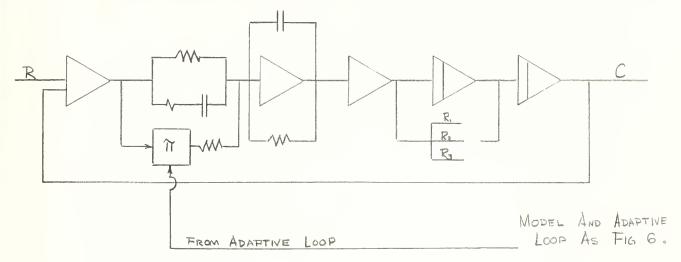

Third Order System Adapting to Second Order Model

Flgure 9 a

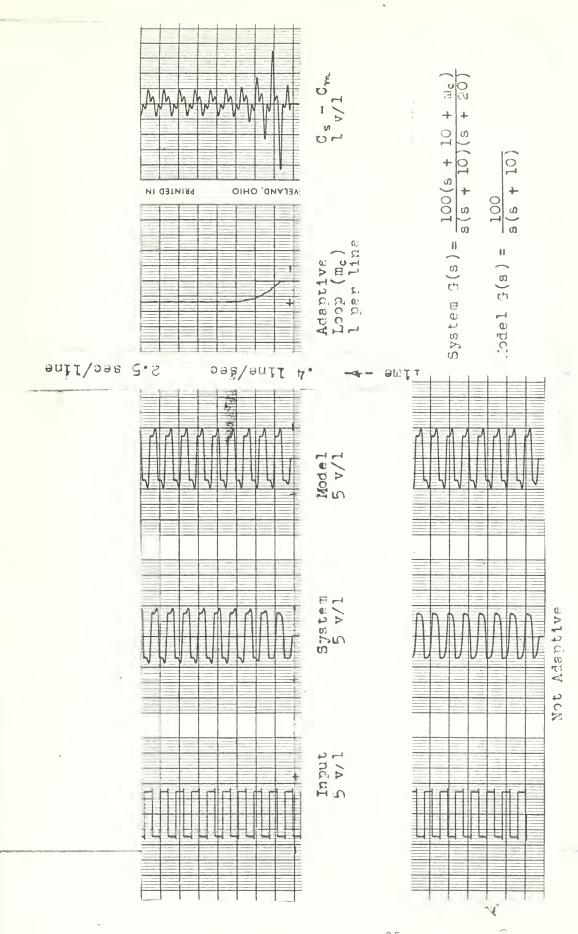
Third Order System Adapting to Second Order Model


Figure 9 b

Third Order System Adapting to Second Order Fodel

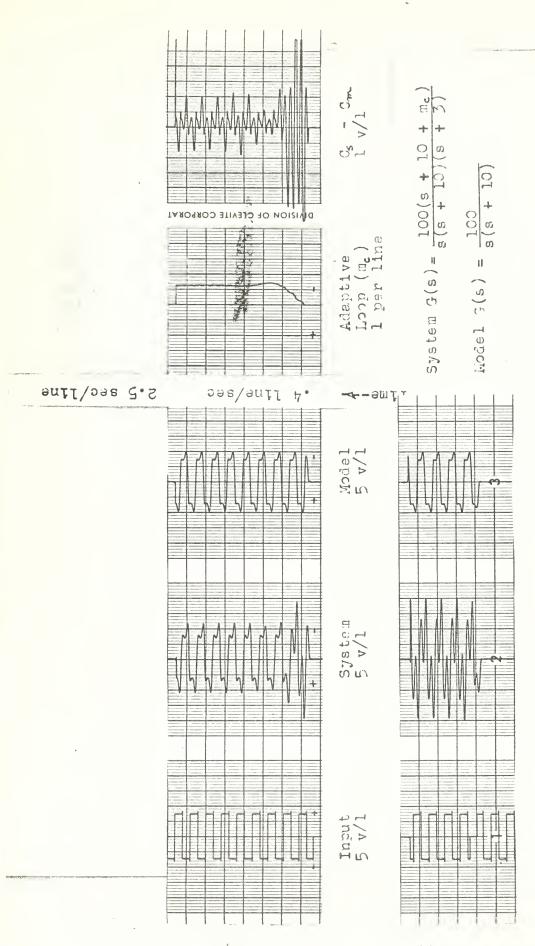

Fig. 10

CONTROL SYSTEM CASCADE COMPENSATION ADAPTATION



This technique is most useful when the operating system pole is not amenable to correction because of the physical characteristics of the system. In the operation illustrated by Fig. 10 zero drift caused compensator cancellation. When drift was introduced the correction forced the zero of the compensator to cancel the system pole, and the desired system operation was restored. The analog computer operating schematic is presented in Fig. 11. For operational simplicity the drift was inserted as a step change in the system pole. The computer output data is presented in Fig. 12, where the successful adaptation of the system is well illustrated.

 ${\tt Fig.~11}$ ANALOG COMPUTER SIMULATION OF COMPENSATION ADAPTATION


The results of these simulations of the adaptive system were considered to satisfactorily demonstrate the feasibility of the method and to serve for participant training. The analytical proof of the correctness of the alterations to the initial formulation, IAE for ISE as criterion, and filter instead of pure integration, have been neglected. The demonstrated accuracy of the adaptation was felt to be sufficient proof of the method.

1.0 to Zeta≈ Second Order System Adapting from Zeta =

Figure 12a

0

Not Adaptive

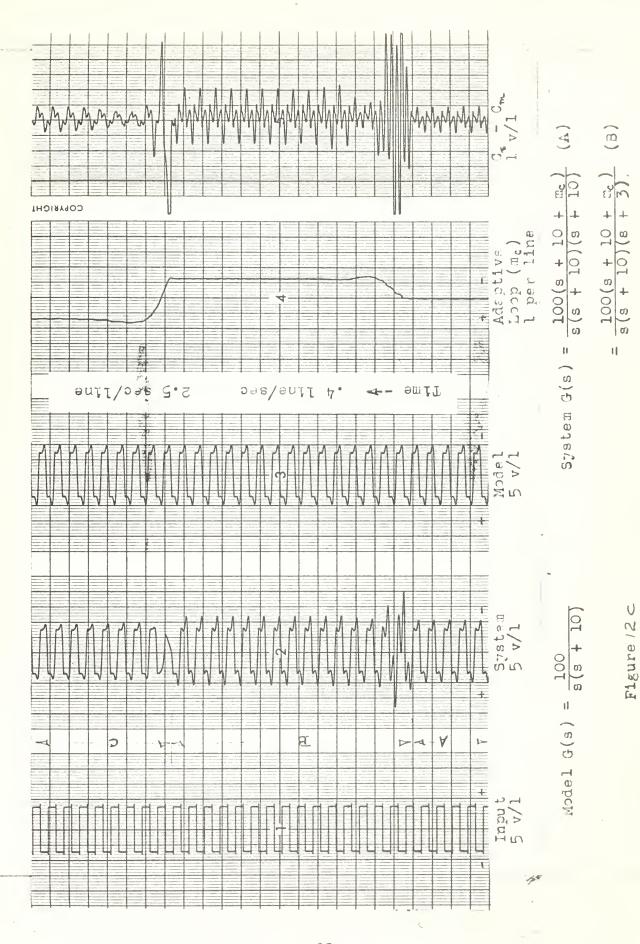
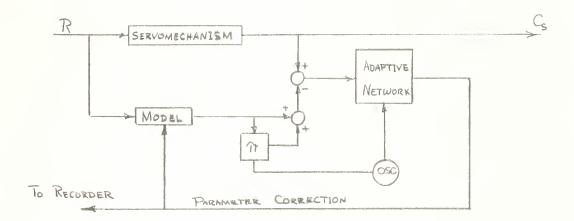

Ħ Second Order System Adapting from Zeta

Figure 126

(0)

100(s + 10 + s(s + 10)(s +

11


Chapter III

IDENTIFICATION THROUGH MODEL MODULATION

The methods of successful adaptive control through model modulation were directly applicable to the identification of operating
systems. The requirements initially set were that the identification
should proceed utilizing only the operating system input and output
without disturbing the system operation. To utilize the model modulation method, the model would be placed in parallel operation with
the system. The adaptive loop output would be applied to the model
parameters to cause the model to adapt to the system. Thus, knowledge
of the unadapted model governing equations combined with the magnitude
of the adaptive loop output would serve to define the system.

This method is shown in block diagram form in Fig. 13.

Fig. 13
MODEL MODULATION WITH MODEL ADAPTATION

This method of system identification does not relieve the engineer of the necessity of system analysis. The form of the transfer function, the order of the operating equation, and the general magnitude of the poles and zeros of the system must be known in order to synthesize

the model. Ideally, one or two critical parameters whose magnitude may not be susceptible to analysis may be estimated, then measured or identified by the model modulation. These limitations should be expected from any adaptive system. The knowledge required to build an adaptive loop which would assume no knowledge of the system, and then synthesize perfect identification, with sufficient economy to be practical, is beyond the state of the art.

The standard second order servo or feedback system equation is formulated in transfer function terms as:

$$\frac{C(s)}{R(s)} = \frac{w_N^2}{s^2 + R S w_N + w_N^2}$$
3.1

For this system the standard open loop transfer function is:

$$\frac{C(s)}{E(s)} = G(s) = \frac{-w_{ii}^{2}}{S(s + ZSw_{-})}$$
3.2

The response of the second order system is completely described by the two variables, zeta and ω_n . A higher order system, or any system with closed loop transfer function zeros, naturally, has additional significant variables. If, however, it is considered that there are two variables of primary interest, the higher order open loop transfer function may be written as:

$$\frac{C(s)}{E(s)} = G(s) = \frac{w_N^2 \times \tilde{\pi}(s+\kappa_i)}{s(s+2Sw_N) \tilde{\pi}(s+p_K)}$$
3.3

where ω and zeta are these variables.

In the development of model modulation system identification method two major assumptions were made. The first of these is,

1...

That in the operating system to be identified there will be but two unknown parameters. Thus the system must be second order, a completely dominant second order approximation of a higher order system, or a higher order system which has the other parameters fully identified. If the latter is the case, the format of the preceding equation will be used to describe the system.

This first assumption limited the parameter adaptation problem to the two variables zeta and $\boldsymbol{\omega}_{n}$

Examination of any physical system reveals that zeta and ω_n may or may not be functionally independent. The simple second order system detailed in Fig. 5 serves as an adequate example. The closed loop transfer function is:

$$\frac{C(s)}{R(s)} = \frac{\frac{k_{n}k_{+}i_{a}}{rJ}}{s^{2} + s\left(\frac{f}{J} + \frac{HK_{a}K_{+}i_{a}}{rJ}\right) + \frac{K_{a}K_{+}i_{a}}{rJ}}$$
3.4

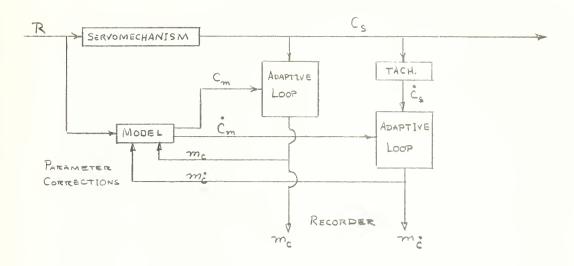
In this system variation of the friction(f) will yield an independent zeta and ω . Variation of all other factors will result in zeta and ω being different functions of the same variable, and thus not independent. Thus zeta and ω may be independent or both different functions of the same variable.

The adaptive method that has been discussed to this point has dealt with but one variable. Since the interdependence of zeta and $\boldsymbol{\omega}_n$ is at the most one of their being two different functions of one factor, it is reasonable to expect that two adaptive loops will be required.

The second major assumption required depends heuristically on this discussion of the functional relationship of zeta and $\omega_{_{_{\rm I}}}$. This assumption is:

II.

That model may be adapted to the system through two separate adaptive loops. The first of the loops will operate upon the system and model output to develop the first corrective factor. The second adaptive loop will operate upon the derivative with respect to time of the system and model output to develop the second corrective factor.


The remainder of this report is devoted basically to showing that these two assumptions are justified.

Proceeding on these assumptions the investigation utilized models of the following general form:

$$G(s) = \frac{K(w_{N_1}^2 - m_c) \prod_{i=0}^{i=N} (s+z_i)}{s(s+2s_i w_{N_1} + m_c) \prod_{k=0}^{\infty} (s+p_k)}$$
3.5

A schematic of the operation of these loops as tentatively applied to system identification is illustrated in Fig. 14.

Fig. 14
SCHEMATIC OF TWO PARAMETER CORRECTION

With this model the characteristic equation of the operating system could then be easily detailed. For the model with the form of equation 3.5 and unity feedback, the closed loop transfer function becomes:

$$\frac{C(s)}{R(s)} = \frac{K(w_{N_i}^2 - m_c) \prod_{i=0}^{N} (s + z_i)}{s(s + RS_i w_{N_i} + m_c) \prod_{k=0}^{N} (s + p_k) + K(w_{N_i}^2 - m_c) \prod_{i=1}^{N} (s + z_i)}$$
3.6

This function may then be used to accurately detail the system differential equations.

Only limited single parameter, single adaptive loop correction investigation was made. Primary investigation concerned the two parameters of the previous equation as in Fig. 14.

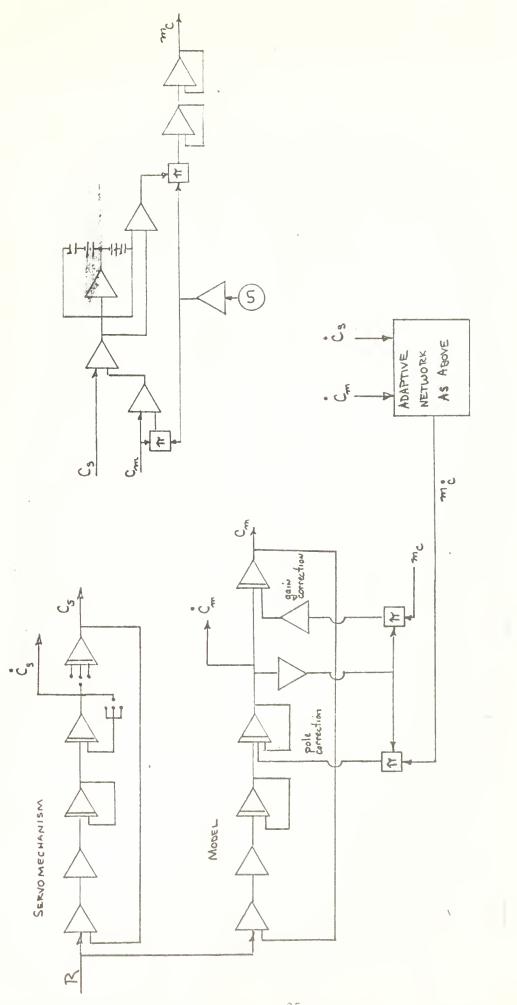
Fig. 14 also illustrates the visualized mechanization of the model modulation identification system. Potentially the model and the adaptive

loops would be constructed through use of standard operational amplifier networks. Thus any moderate sized analog computer operating in conjunction with the scaled input and output of a physical system would serve as an identifier.

Chapter IV

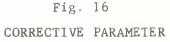
ANALOG COMPUTER INVESTIGATION

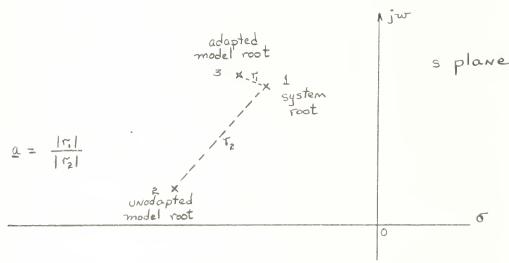
Model Modulation Identification of an Equation of Known Order


The primary investigation was centered around use of the analog computer. The investigation concerned use of two undetermined parameters in the system. The simulated control system transfer function was of the form shown in formula 3.3. The model transfer function as of the form shown in formula 3.4. In both cases the actual computer arrangement was that of the transfer function format. The system values of ω_n and zeta were set up through switching circuits so that three different values of each could be used directly. The adaptive loops used on the computer were those shown in Fig. 6. In general, both filters in the adaptive loops were set for the break at omega = .1 radian. Fig. 15 presents the full analog computer diagram for a simulated third order system with a model tracking two unknown parameters. This diagram conforms to the format of formula 3.3 and 3.5. The initial investigation with this computer arrangement concerned a control system with simulated open loop transfer function of:

$$G(s) = \frac{10 (100) \text{ K}}{\text{s (s + p) (s + 100)}} \qquad 5 \le \text{K} \le 15$$

$$5 \le \text{p} \le 15$$


and a model transfer function:


$$G(s) = \frac{1000 (10 - m_c)}{s (s + 100) (s + 10 + m_c)}$$
4.2

Analog Computer Diagram for Two Parameter Model Adaptation

The input was primarily deterministic. It consisted of a square wave with a frequency which was less than the bandwidth. Tests were also carried out however, using a random input. This random input was the output of a Gaussian "white" noise generator with an 18 db cut off at approximately the system bandwidth. At the completion of each run, the recorded \mathbf{m}_{c} and \mathbf{m}_{c} were used in conjunction with the known model characteristics to derive the closed loop characteristic equation of the simulated system. This allowed comparison of actual system zeta and \mathbf{w}_{n} with those derived from that identified as the system. A non-dimensional corrective parameter was examined and used as a partial criterion of identification. This corrective parameter a is best understood through examination of Fig. 16.

In this figure, $\widehat{1}$ is the dominant root location of the simulated control system, $\widehat{2}$ is the root location of the uncorrected model, and $\widehat{3}$ is the position of the corrected model root. The arithmetic mean $\overline{\underline{a}}$ and the standard deviation, σ of \underline{a} , were computed for each series of tests.

The data for the first series of tests is shown in Table I. In this table the variance of the tracked parameters is shown. The roots, zeta and ω have been shown for only the two extreme cases in each test, that of the maximum and minimum zeta. The correction parameter \underline{a} and the sigma have been calculated from the assembled data of the eight situations for each test where the parameters do not match. Fig. 17 shows a sample of the analog computer output. This data is that of the first and last cases tabulated in Table I Figure 17D will be used to illustrate the method of computing the characteristic equation roots of the operating control system. For this example, the model closed loop transfer function was

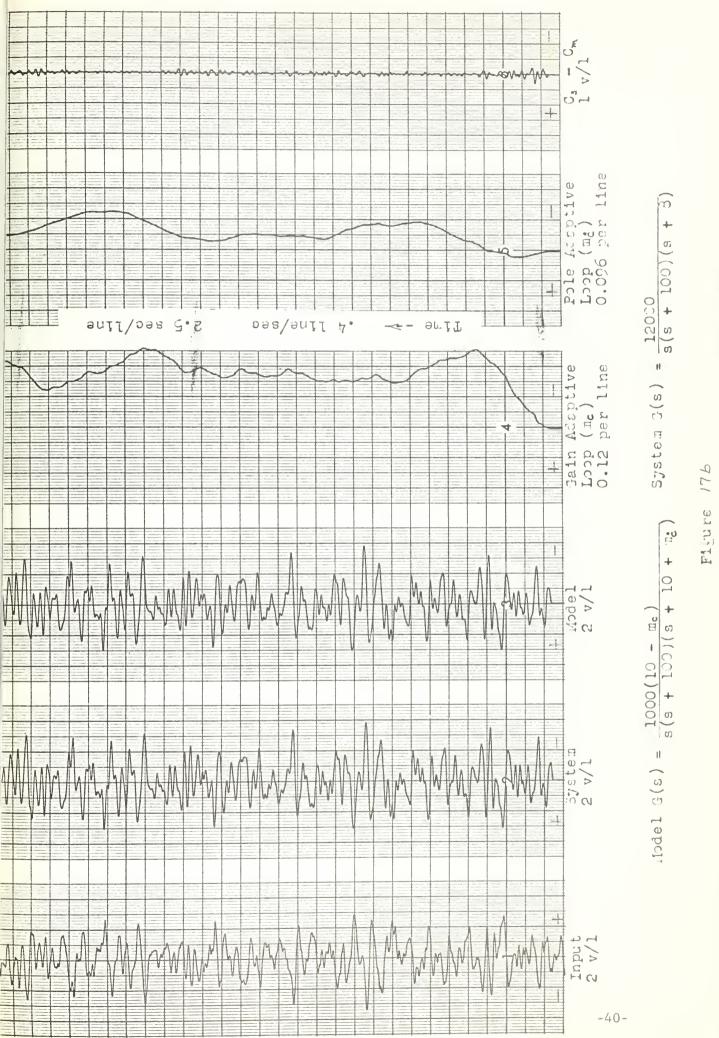
$$\frac{C}{R} (s)_{m} = \frac{10.7 (s+14) (10-m_{c})}{s (s+15) (s+10+m_{c}) + 10.7 (s+14) (10-m_{c})}$$
 4.3

From figure 17D the values of the correction factors may be seen to be $\rm m_c$ = 1.5 and $\rm m_{\mathring{c}}$ = 1.080. The characteristic equation is then

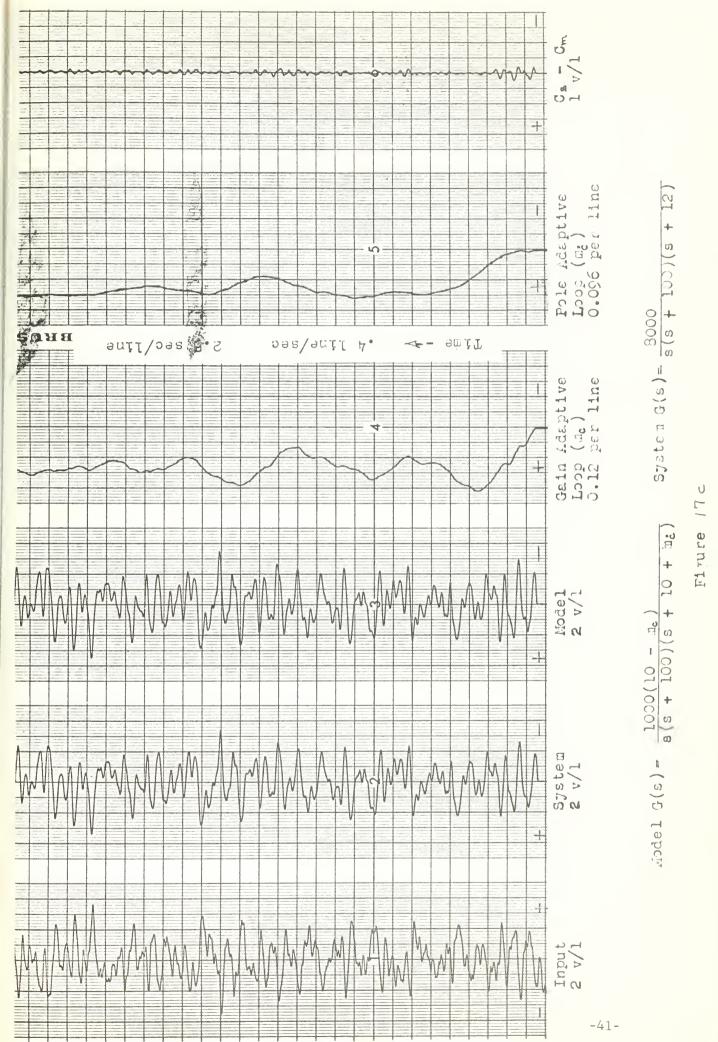
$$s^3 + 26.08 s^2 + 289.1 s + 1724.$$

The roots of this equation were obtained through digital computer service. These roots are:

Fig. 18 shows a plot of the characteristic equation dominant root positions for the actual system and the identified system detailed in Fig. 17.


Equation Order Approximated

During the process of analyzing an operating system, it is inevitable that approximations would be made. These approximations will generally mask or ignore the very small time constants, which in the s plane are the poles of large magnitude. In trying to use the model modulation method to identify an operating system it is then inevitable that the model and the system would be of different order. For a step input, the effect of these poles would be greatest during the initial portion of the transient response, and the effect would become inconsequential in the later portions of the response. It was hypothesized that if the uncertain parameters of the operating system concerned dominant roots, satisfactory identification would take place. The restriction to this hypothesis was two fold. It should be expected that if the input was of a random noise nature with no stead state, no identification would be possible unless, as in the first test of Table I, the equation order and the additional parameters are known. Additionally, with deterministic inputs, identification could take place only when these unknown poles were of sufficient magnitude to be unimportant with respect to the dominant response.


To examine this restriction the tests detailed in Table II were hold. Since the systems to be tested were set up in transfer function format on the analog computer, each pole was a new block set into the basic arrangement of Fig. 14. The information in Table II is of the same nature as in Table I, but as all nine system configurations differed from those of the model, all nine situations were used to calculate the \underline{a} and σ .

System Identification, Two Uncertain Ferameters

Figure 17a

System Identification, Two Uncertain Farameters

System Identification, Two Thearts in Parameters - (3)

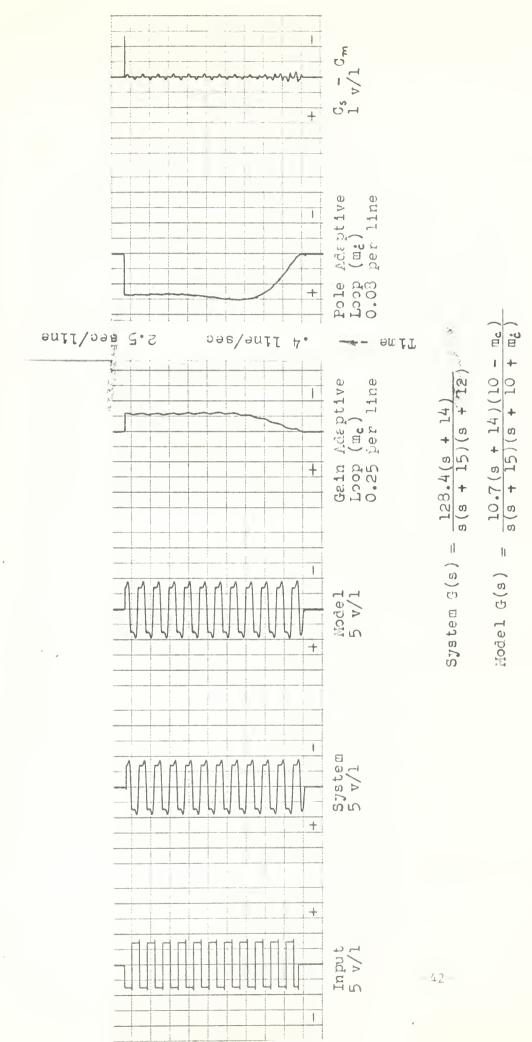


Figure 17 d

System Identification, two Uncertain Parameters

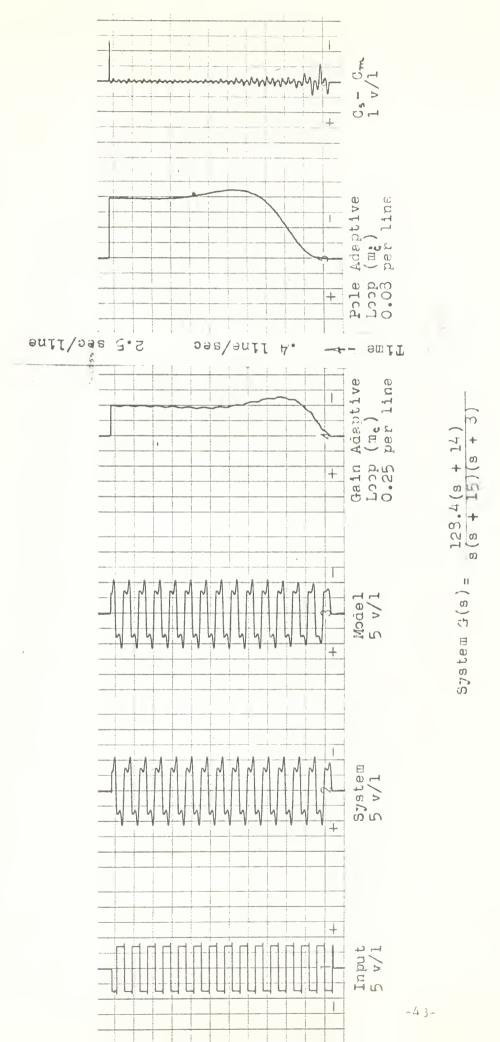


Figure 17e

. E

3(8 + 15)(8 + 10 + 10 + 10 + 10 + 15)

11

Model G(s)

System Identification, Two Uncertain Farsmeters

Figure 17f

10.7(s + 14,)(10 - s(s + 15)(s + 10 +

П

Model G(s)

And except and the test in the except in the		30. 1997; 16.5 (1995) 444 (1995) 444 (1995) 16.5 (1995) 16.5 (1995) 16.5 (1995) 18.5 (1995) 18.5 (1995) 18.5 (1	Table I	Charles of Services and Control of the Control of t	en elder men meller, gelater bestehen sogstette Stromber de bestehe bestehen meller bestehen bestehe bestehen bestehe bestehen bestehen bestehen bestehen bestehen bestehen bestehe bestehen bestehe bestehen bestehen bestehe bestehen bestehe bestehe bestehe	andina effectiveness; years that is sufficient inter-	manufactured and supplied to the supplied of the supplied to t		
		ACTUAL SY	SYSTEM		IDENTIFIED	ED		1	ţ
SYSTEM	MODEL	ROOTS	ZETA	з ^г	ROOTS	ZETA	3 ^L	d	o
10000 s(s+100) (s+10)	10000 s(s+100) (s+10)	-4.45 + j8.89	.45	6.6	-4.41+j8.92	.45	10.0		
12000 s(s+100) (s+8)		-3.36 <u>+</u> j10.35	.31	10.9	-3.97 <u>+</u> j10.10	.36	10.9	.370	.1225
8000 s(s+100) (s+12)		-5.56 + j6.96	. 62	8.9	-5.26+j7.48	65.	9.1		
10000 s(s+100) (s+10)	10000 s(s+100) (s+10)	-4.45 <u>+</u> j8.89	.45	6.6	-4.47 + j8.85	.45	6.6		
12000 s(s+100) (s+8)		-3.36±j10.35	.31	10.9	-3.56±j10.13	.33	10.8	.216	. 0977
8000 s(s+100) (s+12)		-5.56 <u>+</u> j6.96	. 62	8.9	-5.42 <u>+</u> j7.03	.62	6.		
3000 s(s+30) (s+10)	3000 (s+10) (s+10)	-3.12 <u>+</u> j8.89	. 33	9.45	-3.15+j8.93	e.	6.9		
3600		-1.97+j10.09	.19	10.3	-2.16+j10.10	. 21	10.3	.221	.0912
2400 s(s+30) (s+12)	12	-4 31 + j7.30	. 51	8.5	-3.99 + j7.51	24.	8.55		

Table I

		Table	1						
		ACTUAL SY	SYSTEM		IDENTIFIED	ED		1	ł
SYSTEM	MODEL	ROOTS	ZETA	a	ROOTS	ZETA	a u	ಡ	0
10000 s(s+100) (s+10)	10000 s(s+100) (s+100	-4.45 <u>+</u> j8.85	94.	6.6	-4.25 <u>+</u> j8.87	77.	9.85		
15000 s(s+100) (s+5)	_	-1.72±j12.05	.15	12.2	-3.02 <u>+</u> j11.5	.25	12.05	.427	.0120
5000 s(s+100) (s+15)		-7.2±j1.5	. 86	7.4	-8.05 <u>+</u> j4.85	.85	9.6		
10000 s(s+100) (s+10)	10000 s(s+100) (s+10)	-4.45+j8.87	. 45	10.0	-4.45 <u>+</u> j8.87	.45	10.6		
12000 s(s+100) (s+5)		-1.85 <u>+</u> j10.75	.18	10.9	-1.68 <u>+</u> j11.45	.15	11.6	. 199	.0735
8000 s(s+100) (s+15)		-7.02 <u>+</u> j5.45	.79	8.9	-6.34 <u>+</u> j5.40	.77	7.8		
10000	10000 s(s+50) (s+10)	-2.95 <u>+</u> j13.25	o 23	13.6	-2.92+j13.11	. 23	13.5		
12000 s(s+50) (s+10)		-1.65 <u>+</u> j14.67	. 12	14.8	-1.70 <u>+</u> j14.82	. 12	14.9	. 152	. 0840
8000	-	-4 20±j11.45	.355	12.2	is previously the first of the	.35	12 0		

Table I

THE REPORT OF THE PROPERTY OF	along College, de specialiste, more than the comment of sections of special management in				THENTLE			1	
		ACTUAL SYSTEM	M		THE INDICE		(3)	Ø	b
SYSTEM	MODEL	ROOTS	ZETA	3"	ROOTS	ZETA	u		
2500 s(s+25) (s+10)	2500 s(s+25) (s+10)	-2.80+8.78	.30	e. 6	-2.83 <u>+</u> j8.78	S	The Common of th		
3000	The state of the s	-1.66±j9.91	. 17	10.1	-1.84+j9.93	South the matter distance of the cells between t	1 0 · 1	. 259	.1072
2000 s(s+20) (s+12)	en mente en	-3.97±j7.28	.48	© .	-3.73+j7.46	97.	8.35		
2000 s(s+20) (s+10)	2000 s(s+20) (s+10)	-2.39±j8.57	S C	entigen winder with mile mile that the second will mile that the second will be second with t	-2.50+j8.62	S 2 .	O .		
2400 s(s+20) (s+10)	W. Miller Co. St. Company of St. Com	-2.10 <u>+</u> j9.45	CV CV	65 , 65	-2.20+j9.34	.23	9 . 6	.212	.0945
1600		-3.52±j7.19	77.	© 0 0	-3.33 <u>+</u> j7.45	. 42	8.2		
1	107 (s+14) s(s+15) (s+10)	-6.40 <u>+</u> j9.25	. 54	0	-5.89± j9.26	. 57	11.3	of the second of	haves strange side of the Bank Straw Straw Straw Straw
128.4 (s+14) s(s+15) (s+8)		-4.28 <u>+</u> j10.30	39	11.2	-4.52 <u>+</u> j10.46	07.	7	.270	. 1314

10.1

.67

=5.59±j7.72

9 3

. 70

-6.36±j6.57

85 6 (s+14) s(s+15) (s+12)

Fig. 18a					1,11	11 441	1 4-	+ .1
LOCATION OF DOMINANT ROOTS FOR THE								
ACTUAL AND IDENTIFIED SYSTEMS								
System G(s) = 1000K				Hillia				
S(S+100)(S+P)				HH			+1	
Model G(s) = 10000								
S(S+100)(S+10)								
△ Identified Dominant Root								
							1	
⊙ Actual Dominant Root								
				11 to 1 to 1 1 to 1 to 1			12	
			K = 1	2 3 1			1	
		0	1					5 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		Δ	P = 8		H-		10	
	40	K = 1	lo				11.1-1	jw
		P = 1	lo					
							1 E	
K = 8				1314				
P = 12								
							HE.	
							6	
				471.17		出品		
					i III	1311 -11	2	
						7:4 1		
1 T 4 T 4 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T								14: 1
				121.1.1			0	
							1 1 1 1 1 1	
						II O III		11-11-

					, ::			.:	,		1.	1114		1		N N					11.1	F.F.	. , ;	11	1:11	n F	1	1	, Fig.	1.13
								+ ;		11-1	1							11			1.3				. 7	1.1				
	1.1.											h	Badada bi A	2.1.4.4	4.4.4.1511	b B Bokoko		H			H	111		11 1	.1:	41		. 1		T
									Fig	;.]	d8.							=							, ,	1				
	14			¥	00:	TIO	N C	ים ר	Y) (1	המדה	rm r	000	na ·	E C C C	OPT T	D					HH				1111			1		<u>'</u> =
	Til.			1		AUTC								for Tem:		<u> 15</u>		H												
						C		. 0/	-)	***	10	712/	้อเ	1/1/							Hi	.:!:			1-1		1			
i						Sys	i es	, G(5)		(S ₁	15))(S	14) +P)									1114			H				
of day	H	=					100											H		H	Hi		17		-1.1	11.		. • • i		-1-
far.			٠			Mod	914	U (a	•) -	<u>s</u> (2+1	7(S+	S+	10)											: 11	TIL	111		1711	
	1					^		and	1 01					Ro	. 4									Lili	HII		5 []		++	:II
						45	AL C	1011	,111	Leu	DOI	LIN	III	KO	JE															
						0	Ac	tue	1 I	Omi	nar	nt F	900	t											111	111		-12		
	1 1 1					1	***	. , ,				TI TELE		1.111	HILL	LJ I .J														
					111	Fil		-4.5	II;	HI.	HIF			H						K	= 1;	2	H			11:		- :		14
	111				77.7		H	11:71	1:::			1.,						- 4	0	P:	= 8					145		1.1	-1	
										K	=	12	ili		H							!!				! · † i		10		出
		1.11			H		1111	-		I) =	12		Δ	0					H		Hili								
	111	Hi		F#11		EFF!							H		III							固			41	I 1	171			蕌
		145.		Hi	F.T.		1	W											H	HH					H					
	· ITE	i, I					H	HI	链												Hil							-8		
											(=	8	4												F	+,1				
			1	: 14	1111		111				P =	12		0	THE											I.E				
		H										Ш		FG													H			
	111		: : : : : : : : : : : : : : : : : : :		H	H		HE	Hi	III'		H	li		III										H		莊	-0		旺
	111	-111			1	i i	141	-1																						
		111		77	-		dt	1111								-														
		His	1				merce i di sebui				H													EH	lili.	H		17.4		
		r : 1			1							141	i		H												115			
	1			11.	1-1-1 1-1-1																			H			H			
	rii .i ·			1		1 1	irih					1111						بإسدسه						H	H					腽
	H				. 17									HII		HE											1	2		
	H.	11					-					1				11+-1											117	Titt		围
					1411	(-l-b-1	11	1.1																	H					
	117						,		7				ii																	
								- [-1]							Andrew Contract		-	TH	Ħ					III	脯		1:	0		
	1611		111		11-1		=1				Eir		H	111	1:1				HH		11.		11:				11			H
	1- 1				1					8		H		6					4			2				11111	H			
		151.		7.				Hii.	111						H		i E		H											
			-1-1																						1 1 1 1 1		2 1 1 1 1 1 .			語
-				1111		لتبليا		LITT.			UIII	H		LITT	1111	HIT	1110	111	TIT	HILL	Ш			1,111		HILL	The state of	LITT	11.	للننا

The results of these tests were as expected. The random input revealed, as expected, lack of identification. Under deterministic inputs, when the postulated restrictions were held, satisfactory identification took place. One interesting point revealed in this investigation was that an adequate test for satisfactory identification would be made if the frequency of the input could be varied. Naturally this violates the basic restriction that led to the development of this method, i.e., no violation of the natural operation of the system, but is a point of interest. For this process the frequency was varied between a lower frequency with a period equal to the second order time constant and an upper frequency equal to the bandwidth. When the adaptive loop outputs remained relatively constant through this frequency range it was found that these outputs served to adequately identify the dominant roots when the characteristic roots were found. If, however, the identification varied through this range, the effect of the ignored poles precluded satisfactory identification.

Figure 19 presents illustrative data from the first tablulated case of Table II for this series of tests. Fig. 20 shows the dominant roots of the system for each of the tests illustrated in Fig. 19, with the dominant roots as identified from the data.

Examination of the data reveals that for both of these types of equation situations good dominant root identification has been achieved. It was found that these dominant roots could be identified to within an average error of 2.2% of the undamped natural frequency and to within an average error of 4.76% of the complex phase angle. When

this method is used to identify the characteristics of an actual linear control system, it is highly probable that greater accuracy may be attained since the model parameters may be varied to obtain error bracketing. This process is illustrated in Chapter VI.

		Tab	Table II						and the second s
F CALAL AX O		ACTUAL SYSTEM	STEM		IDENTIFIED	IED			
SYSTEM	MODEL	ROOTS	ZETA	w n	ROOTS	ZETA	a	Q	0
10000 s(s+100)(s+10)	100 s(s+10)	-4.45+j8.89	.45	6.6	-4.67 <u>+</u> j8.75	87.	10.0		
12000 s(s+100)(s+8)	en de la technica poud direction de la constitución	-3.36 + j10.35	.31	10.9	-3.75 <u>+</u> j10 1		10.9	.202	0858
8000 s(s+100)(s+12)	=	-5.56 + j6.96	Account of the second of the s	8.9	-5.60+j6.90	Professional State of the Control of	6.8		
10000 s(s+100)(s+10)	$\frac{100}{s(s+10)}$	-4.45 <u>+</u> j8.89	. 45	6.6	-4.69 + j8.90		10.1		
12000 s(s+100)(s+8)	=	-3.36 <u>+</u> j10.35	31	10.9	-4.00 <u>+</u> j10.4	. 36	11.2	S 6 3	.0732
8000 s(s+100)(s+12)	-	-5.56 <u>+</u> j6.96	. 62	6.8	-5.40 <u>+</u> j7.30		1.6		
10000 s(s+100)(s+10)	100 s(s+10)	-4.45 <u>+</u> j8.89	. 45	O .	-4.95 <u>+</u> j8.70		10.1	Linda SAFETTE COST. ARIO, COST STANS, LIN	
12000 s(s+100)(s+8)	=	-3 78±j10.10	. 31	10.9	-3.78±j10.10	98	10.8	. 332	.1540
8000 s(s+100)(s+12)	# I	-5.56±j6 96	. 62	6 ° 8	-5 ° 54±j7 - 62	09	5.		
		a albei				(The d	EV Mg	Property and the second	

d. maja yan afi ya adigiri isaka na ya nga masana ati saffinia ya Na kan yifini na wana kan saga nga masana a	edy other processing of system, processing annual communication of the processing of	Table	II		Ammy magnetischen Ammerika andere der einstelle der die der eins aus det meg den gegen) 	1
SYSTEM	MODE1.	ACTUAL SY	SYSTEM		IDENTIFIED	0		100	р
		ROOTS	ZETA	3 [¤]	ROOTS	ZETA	3 ^r	3	
1,000,000 s(s+100)(s+100)(s+10)	100 s(s+10)	-3.89+j9.04	.40	6.6	-4.23+j9.38	.41	10.3		
1,200,000 s(s+100)(s+100)(s+8)	-	-2.72+j10.40	.26	10.8	-3.42 <u>+</u> j11.40	. 28	11.9	. 336	.0485
800,000 s(s+100)(s+100)(s+12)	11	-5.07+j7.22	. 58	8.	-5.00 <u>+</u> j7.56	. 55	9.2		
7500 s(s+75)(s+10)	100 s(s+10)	-4.26 <u>+</u> j8.93	77.	6.6	-4.58 <u>+</u> j9.30	.45	10.4		
9000	=	-3.14+j10.36	.31	10.9	-3.80 <u>+</u> j10.50	.35	11.2	. 332	.1540
6000 s(s+75)(s+8)	Ξ	-5.38 <u>+</u> j7.04	.61	6.8	-5.36 <u>+</u> j7.15	.61	0 6		
10000 s(s+100)(s+10)	100 s(s+10)	4.45+j8.89	. 45	9.	-4.82 <u>+</u> j8.90	.47	10.1		
15000 s(s+100)(s+5)		-3.36+j10.35	.14	13.2	-3.20 <u>+</u> j11.20	.27	11.7	. 387	. 146C
2000	11	-7.20+j1.5	1.0	7.2	-6.63+j1.6	76.	6.9		

s(s+100)(s+15)

		8.6	.43	-4.14 <u>+</u> j8.90	8.6	.37	-3.51+j9.06	100 s(s+10)	562,200 s(s+75)(s+75)(s+10)
		8.9	. 58	-5.07±j7.30	∞	.57	-4.90+j7.28	1	600,000 s(s+75)(s+100)(s+12)
. 1268	. 304	10.7	.30	-3.18 <u>+</u> j10.15	10.7	.25	-2.51±j10.37	11	900,000 s(s+75)(s+100)(s+8)
		6.6	.43	-4.24+j8.85	8.6	. 38	-3.69+j9.05	100 s(s+10)	750,000 s(s+75)(s+100)(s+10)
)	ช	e u	ZETA	ROOTS	a a	ZETA	ROOTS		
t	(D	IDENTIFIED		FEM	ACTUAL SYSTEM	MODEL	SYSTEM
							Table II		
1		Ì							

.1148

. 332

10.5

. 29

 $-3.02 \pm j10.20$

10.6

.24

 $-2.31\pm j10.34$

s(s+75)(s+75)(s+8)

774,640

9.0

.57

 $-5.10 \pm j7.38$

∞ ∞

.55

-4.73+17.33

000 000

s(s+75)(s+75)(s+12)

449,760

12.1

. 28

 -3.88 ± 19.23

11.0

.26

 -3.97 ± 19.21

100

s(s+50)(s+50)(s+10)

250,000

1138

.210

10 1

39

 $-3.35\pm j11.60$

10.1

04°

-2.74±j10.62

=

s(s+50)(s+50)(s+8)

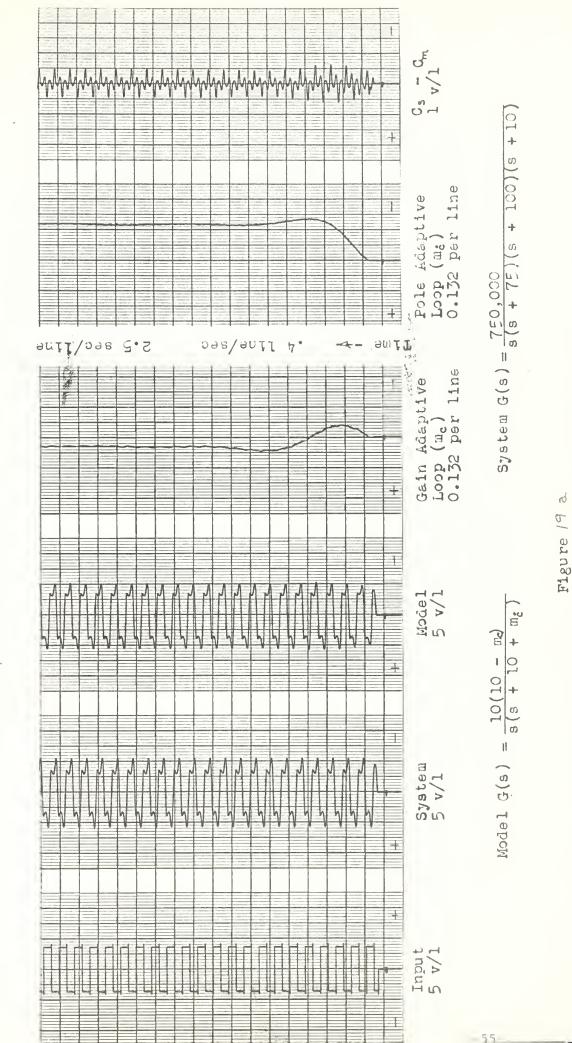
300,000

9.1

.57

-5.14+j7.42

9.1


. 58

-5.20 + j7.31

=

s(s+50)(s+50)(s+12)

200,000

Root Identification & Two Unosertain, Parameters System Dominant

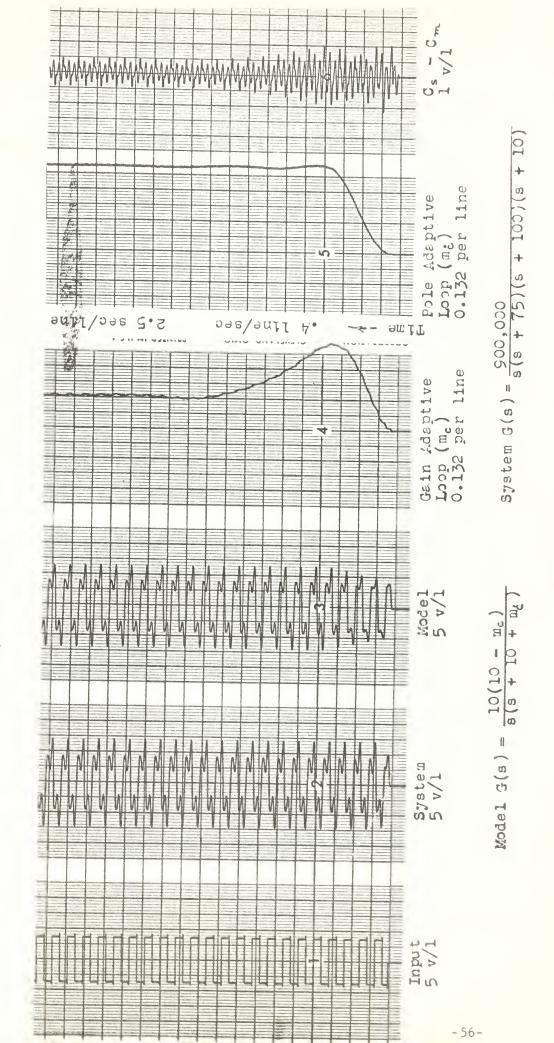
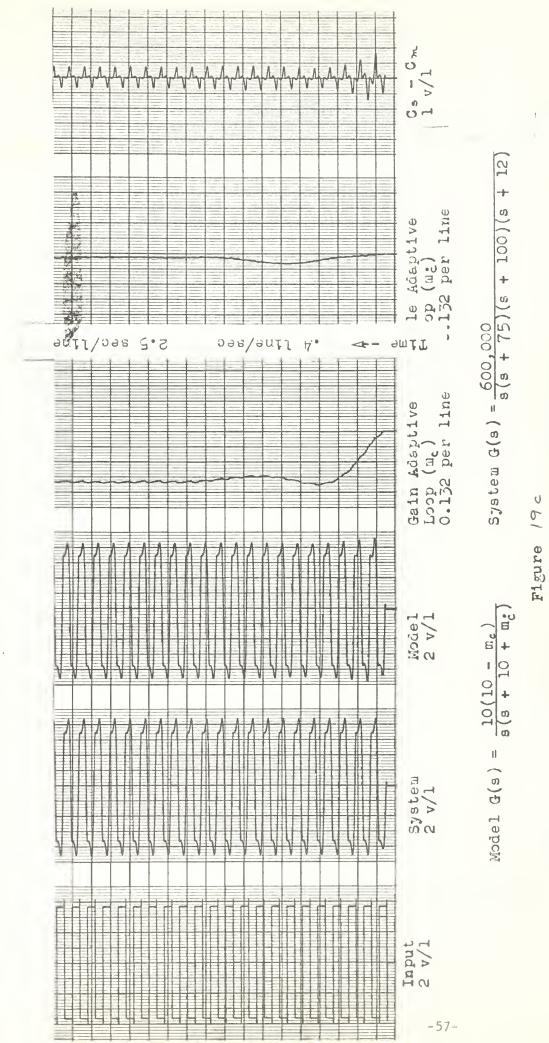



Figure 196

System Dowlnant Root Identification, Two Uncertain Parameters

System Dowinant Root Identification, Two Uncertain Parameters

FILE	i			1.,	, ,	17.	11 11		14		-1 1				- 1	111.1	.;'		1.11		, 11		. (1	1 .1		, , ,	:
					11,	4) - 8 uhr nauh			1	-	_ ::			-	1 -1	1 1 1		1		11.11								
			1	~ 1				***	-1	-																		
		i							b-0-1	1 179 0		1		-		111	1.11											
							F	ig.	20)							11.1	1111	1								-	
and the second s	and the		T.C) C & 1	NOIT	1 01	רו י	A CT N	የል እየጣ	ים וי	\C\188	s Fo	י מו	יבונות											I minute to a	t sales or	unq q	
11.7:			110									o re YSTI		Inc				111				1"				- 1		
			0	1 A		01	\ -			~,	-0.0	0.75				1,-							111:		11.1			
	1 -		2	yst	,em	G(s	3) =	s	S+1	.00)(5	ok +75)	(5.	+P)				1311			117			. 11	1	111.		
	. 4.			. 1	3 0	. /							•	. ,				111					1.	1 1 1	11.			
	1		M	1006	1 0	i(s)) —	3(8	00 3+10	1								1111			1		:11	1 1 1	.i.9			
																									111			
1,7.	115			Δ	Ide	nti	fic	d I)om i	nar	at :	Root	t						HH			17.		', '		12		
	1.11			0	Act	ua]	L Do	mir	ant	Ro	oot							111									1.	
11. 1.7.	HF.	71 mag			Ž,	1			,		,				meson L2	+		H			†i†i	1 :	. ;;		(_ 1		1 1 1
::::::::::::::::::::::::::::::::::::::		- 1	:::		HT.	HH!				1111							L			1:11	K	12	2	1:	ļ i.			
	144	11:1							111								H	1	3 (3				Η,.		10		1:1
	:115					H	1434	1	#11						T. I.		::!!	Hi		H	P :	= 8		17 1	1 1	10		
	1:11		1.14			HE									E.14	His		H	K	= 10	III			F	1.0.		iu	
	11 1				11,	ĪĒ	Hii			111	1: 1				li ii	4	-0		ъ.	- 1/		4:	1+ -	I. I.			J. W.	ηĒ
			4	1111						1.0									P :	= 10			III	, ;	1.0			
	-	11,1		Ti i	1	111	44							1:1:			1111	1111					-11	1.1	: 11	-0	1	1::7
					11.12		1.1.E.	+ +				K =	0	1	0	1				1 1		1-1			1 1 1			+ : : :
	1.1						1411	111				P =	12	1	Till		HE		HH		1,11,	111	11-1					1.1.
	111-		-1					1111							HL			1711		1:1		H		1-1				
	-							H.						1:17		1411		11111	<u> </u>	1.11.		HE:	17-15	F : 1 !	: 174	- 6		
							4411						17												117-	112	. 1	
	1					11+-															1.77	1-1-1-1			1: 1		1 1	117
1	15.			11.11	1 2 -			1.77			-											1				- 1		
	1.5							+ + 1	cl)			11.1											1-1	1.1		- 4		- ·
					1	The second secon			H.;									LE.							- 11			7.1
			: : : : :	ing.		11.11	1:18	1															1111			-	1	. []
																					111.	1 1 1 1				1		
1		:			1		1111	1111	111	1:41										H		14+ 1411		11	11.	- 2	11 1. 1. t.	
				for short indicate a						+ + +											1							
		-							1+11	111														1	1			EE.H
			11 1					1 + 1 1			1										4-3		1		-		1	
						111		H			1 1 1		411		HH	H				H , 1	1		1			0		
																11							1	1 " 1 "	1 1 1 1		1	
							11:	8				6				4		Hiti		2	141	HH.		0		1		Section 1997
	-	<u> </u>	je voten kondrande d											0														
			:4.J.								H									H						H		

Chapter V

DIGITAL COMPUTER SIMULATION

Direct utilization of a digital computer for identification of an operating control system was not considered. It is possible, however, that operating systems might be monitored or controlled by digital techniques. In this case the output would be presented in the form of discrete numerical data. Ideally this data could be used as input to a digital-to-analog converter, and the analog techniques previously described could be used for operating system identification. In the absence of this equipment, digital simulation of the control system, model, and adaptive loops was investigated to illustrate the techniques and the potential applicability of model modulation techniques through numerical techniques. This investigation was conducted through the use of the CDC 1604 Digital Computer. The program code was written in Fortran. A standard Runge-Kutta numerical integration process was used to solve the differential equation which governed the operation of the full model, system and adaptive loop. The differential equations were formulated in a transfer function format.

Three basic configurations of model adaptation were tested through this digital computer simulation. For these configurations the model was used to identify the operating control system characteristic equation roots under the following conditions:

- 1. Second order control system with undetermined pole.
- 2. Second order model, third order control system with uncertain gain and uncertain dominant pole.
- 3. Third order system and model with two uncertain poles.

The actual investigation was limited to achieving a successful solution for one parameter set for each of these configurations. The excessive time used by integration techniques on the digital computer was of course a limiting factor. The first of these configurations will be by-passed in this discussion since it can be considered to be a subsystem of the second configuration.

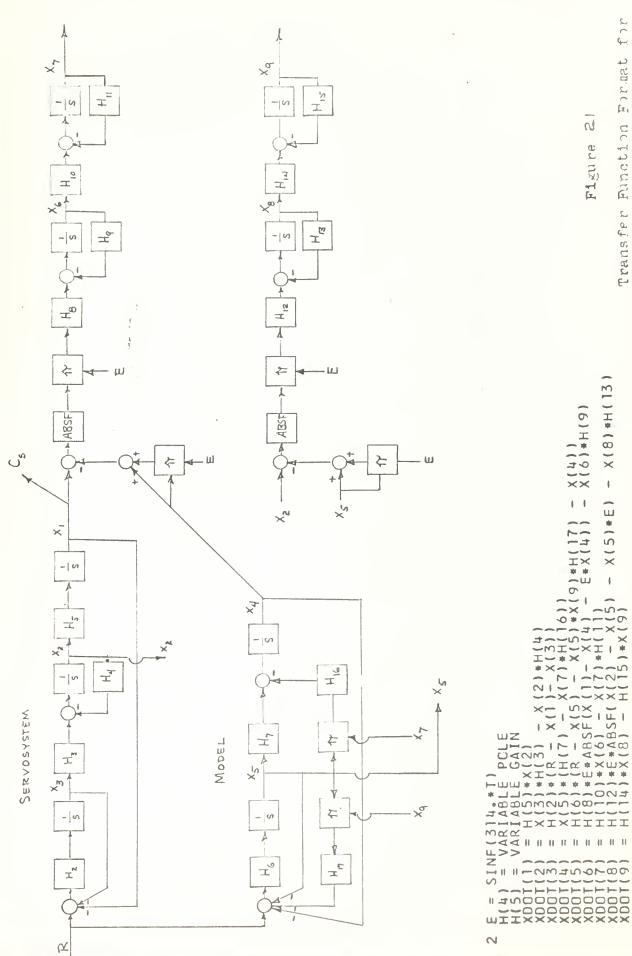
The model for the second configuration had the following open loop transfer function:

$$G(s) = \frac{10 (10 - m_c)}{s (s + 10 + m_c)}$$
5.1

and a closed loop transfer function of

$$\frac{C}{R} (s)_{m} = \frac{10 (10 - m_{c})}{s (s + 10 + m_{c}) + 10 (10 - m_{c})}$$
5.2

The control system open loop transfer functions were


$$G(s) = \frac{12000}{5(s+100)(s+8)}$$
 5.3

and

$$G(s) = \frac{8000}{S(s+100)(s+12)}$$

Figure 21 presents the transfer function format which was used to formulate the differential equation for the FORTRAN program. This format allowed formulation of the operation by a set of quasi-state variables of the form:

$$\dot{x}_n = f_n(x_1, x_2, x_3, 000 x_n, R)$$
 5.5

61-

N Figure

X(8) *H(13)

-

X(5)*E)

(1) x(5) (9)

BSF

Function Format for 30 months Promise Promise Front Fr Transfer F Digital C The solution of the equations was programmed to be presented in both numerical and graphical format. Fig. 22 presents a sample of the input program Fig. 23 presents a sample of the numerical data output, and Fig. 24 presents the graphical data output for the control system open loop transfer function given by equation 5 3.

The graph of Fig. 24 presents the corrective parameters as "corrected pole" = $(10 + m_c)$ and "corrected gain" = $(10 - m_c)$

Table III shows the identification of the characteristic equation roots for these two situations.

Table IIIA
DIGITAL COMPUTER CHARACTERISTIC EQUATION ROOTS

	Control System	Model as Corrected
Equation 5.3	- 3.36 <u>+</u> j 10.35 - 101.27	- 3.07 <u>+</u> j 9.97 - 101.15
Equation 5.4	- 5.55 <u>+</u> j 6.96 - 100.9	- 4.88 <u>+</u> j 7.77 - 100.93

```
ID.OF EQNS., NP=NO. OF INCREMENTS BETWEEN PRINT OUTS, TO=INITIAL
ME, TF=FINAL TIME, DT=TIME INCREMENT, TN=TIME FIRST PRINTED DATA,
I)=INITIAL VALUES OF THE VARIABLES X(J)
NO. OF INCREMENTS BETWEEN GRAPH POINTS
ODIMENSION X(30), X1(900), X2(900), X3(900), X4(900), X5(900), X6(900), TI
1ME(900), H(30)
COMMON R. F. T2
N=NO.OF
TIME,
X(J) = INITIAL
NG=NO.
                                      R, E, T2, H
(3110/(8F10.0))
(12 / (12,F20.0))
(F8.3,10F11.5)
               COMMON
 100
 102
               FORMAT
 200 FORMAT
2010FORMAT
                                                                                                                                                                                                                            SYS.VEL://)
                                          (99H
                                                                                                  SYS.POS
                                                                                                                                           MOD.POS.
POLE COR.
                                                                    TIME
                                                                                                                                                                                    POS.DIFF.
                                                                                                 GAIN COR.
            1MOD.VEL.
FORMAT (/)
                                                         VEL.DIFF.
                  FORMAT (1)

FORMAT (1)

FORMAT (1)

FORMAT (2)

FORMAT (32H GAIN CORR FILTER CORNER AT W = 66.2

FILTER AT W = F6.2

FORMAT (25H MOUEL = 100./S(S+10).

FORMAT (37H ADAPTIVE SYSTEM GAINS, OUTPUT (S) = 100.100 (D) = 100.200 (D) 
 203
204
205
               FORMAT
               FORMAT
                                                                                                                                                                                                  2H) . 27H,
               FORMAT
 2060FORMAT
                                                                                                                                                                                                                                 POLE
                                                                                                                                                                                                                                                 CORR.
               FORMAT
 2080FORMAT
                                                                                                                                                                                                 F6.2,
                                                                                                                                                                                                                          20H, FIRST DE
                                               = F6.2
                                (D)
             1RIV.
               FORMAT (20H COEFFICIENT NUMBER 12, 2H = READ 100, N, NP, NG, TO, TF, DT, TN, (X(READ 102, NH, (K, (H(K)), I = 1,NH))
                                                                                                                                                                            F12.4,
 210
                                                                                                                                                                                                       1H.
                              100,
102, NH,
1 204
T 208, H(16), H(15)
G = H(5)* H(2)* H(5)
I 205, ASYSG, H(4)
206, H(11), H(15)
                                                                                                                                                         (X(J),
                PRINT
               PRINT
ASYSG
                                                                                  H(17)
+ H(3)
                PRINT
                PRINT
                                                                                     H(15)
                PRINT
                                     I = 1,NH
202
210, I, H(I)
203
201
                DO
                PRINT
               PRINT
                PRINT
                PRINT
                T = TO
                T2 = 0.0

NUMPTS = 0
                T2 =
               \begin{array}{ll} MPTS = & 0 \\ DPOS & = & X(1) \end{array}
                                                         - X(4)
                                  = X(2)
                DVEL
                                                           - X(5)
                                         = H(7)
                                                                           X(7)*H(16)
                AGACOR
               APGLCOR = H(6)#(
IF (T-TN) 34. 2
                                                                                         + X(9)*H(17))
                IF (T-TN) 36, 2, 2

IF (MPTS) 3C, 35, 30

IF (XMODF (MPTS, 50*NP))

IF (XMODF (MPTS, 10*NP))
                            (T-TN)
                                                                                                 31,33,31
32,34,32
36,35,36
     30
                IF (XMODF (MPTS.
                                                                               NP))
                                   203
201
202
200
               PRINT
                PRINT
     34
35
               PRINT
                                                         T, X(1), X(4), DPOS, X(2), X(5), DVEL, AGACOR, APOLCOR
               PRINT
               MPTS=MPTS+1
               IF (XMODE (MPTS + NG
NUMPTS = NUMPTS+1
IF (900 - NUMPTS
                                                                       NG)) 38, 39, 38
     39
                                                                               ) 38, 38, 40
               X1 (NUMPTS)
X2 (NUMPTS)
X3 (NUMPTS)
X4 (NUMPTS)
    40
                                                         = X(1)
                                                                X(4)
                                                                AGACOR
                                                               APOLCOR
                X5 (NUMPTS)
                                                                DPOS
                                                        =
                X6 ( NUMPTS)
                                                       =
                                                                DVEL
                TIME
                                 (NUMPTS)
               IF(TF-T-DT)
                                                                 10,20,20
               PRINT
                                      204
                                                                 NUMPTS
                CALL
                                   GRAPH
                                                                                                                     9
                                                                                           9
                                   GRAPH
                                                                NUMPTS
                CALL
                                                                                                  TIME
                                                                                           9
                                                                                                                            X5
                                                                NUMPTS
                                                                                                 TIME
                                                                                                                                               8
                                   GRAPH
                CALL
                                                                                                                                                       )
                                                                                           9
                                                                                                 T IME
T IME
T IME
                                  GRAPH
                                                                NUMPTS
                                                                                                                            X6
                                                                                                                                               8
                CALL
                                                          (
                                                                NUMPTS
NUMPTS
                                   GRAPH
                                                                                                                                               8
                CALL
                                                                                           9
                                   GRAPH
                CALL
                                                         (
                                                                                           9
                                                                                                                     9
                STOP
    20 CALL RKUTTA(N, T, X, DT)

T2= T2 + DT

T = T + DT
                                                                                                                                 -63-
```

Digital Computer Program (con't)

```
SUBROUTINE RKUTTA (N,T,X,DT) DIMENSION x(30), AK(4,30) , XDOT(30), XC(30),C(4) , H(30) COMMON R, E, T2, H
COMMON R, E, T2, H
C(1) = 0.0
C(2) = 0.5
C(3) = 0.5
C(4) = 1.0
DO 4 I = 1, 4
TC = T + C(I) * DT
DO 2 J = 1, N
XC(J) = X(J) + C(I) * AK(I - 1, J)
CALL DERIV(TC, XC, XDOT)
CO 4 J = 1, N
CO 4 J#1,N
AK(I,J) = DT* XCOT(J)
 DO 3 J=1, N

X(J)=X(J)+(AK(1,J)+2.*AK(2,J)+2.*AK(3,J)+AK(4,J))/6.
 RETURN
  END
 SUBROUTINE CERIV(T, X, XDGT)
DIMENSION XDOT(30), X(30), H(30)
COMMON R, E, T2, H
IF(1.0- T2)3,3,1
R = H(1)

GO TO 2

R = -H(1)

IF(2.0 -T2) 4,4,2

T2= 0.0

GO TO 1

F = SINE(2.1)
 E = SINF(314.*T)
H(4) = VARIABLE PCLE
H(5) = VARIABLE GAIN
H(5) = VARIABLE GAIN

XDOT(1) = H(5)*X(2)

XDOT(2) = X(3)*H(3) - X(2)*H(4)

XDOT(3) = H(2)*(R - X(1) - X(3))

XDOT(4) = X(5)*(H(7) - X(7)*H(16))

XDOT(5) = H(6)*(R - X(5) - X(5)*X(9)*H(17) - X(4))

XCOT(6) = H(8)*E*ABSF(X(1) - X(4) - E*X(4)) - X(6)*H(9)

XDOT(7) = H(10)*X(6) - X(7)*H(11)

XDOT(8) = H(12)*E*ABSF(X(2) - X(5) - X(5)*E) - X(8)*H(13)

XDOT(9) = H(14)*X(8) - H(15)*X(9)

RETURN

FND
 END
```

Figure 23 a Digital Computer Numerical Output

ADAPTIVE SYSTEM GAINS, OUTPUT (S) = 10.00, FIRST DERIV. (D) = 10.00

SYSTEM= 12000.0/S(S+1CO)(S+ 8.00).

GAIN CORR FILTER CORNER AT W = .10, POLE CORR. FILTER AT W = .10

MODEL = 100./S(S+10).

COEFFICIENT NUMBER 1 = 10.0000.

COEFFICIENT NUMBER 2 = 100.0000.

COEFFICIENT NUMBER 3 = 10.0000.

COEFFICIENT NUMBER 4 = 8.0000.

COEFFICIENT NUMBER 5 = 12.0000.

COEFFICIENT NUMBER 6 = 10.0000.

COEFFICIENT NUMBER 7 = 10.0000.

COEFFICIENT NUMBER 8 = .5000.

COEFFICIENT NUMBER 9 = .5000.

COEFFICIENT NUMBER 1C = .1000.

COEFFICIENT NUMBER 11 = .1000.

COEFFICIENT NUMBER 12 = .5000.

COEFFICIENT NUMBER 13 = .5000.

COEFFICIENT NUMBER 14 = .1000.

COEFFICIENT NUMBER 15 = .1000.

COEFFICIENT NUMBER 16 = 10.0000.

COEFFICIENT NUMBER 17 = 10.0000.

POLE COR.	100 100 100 100 100 100 100 100 100 100	99 90	89999999999999999999999999999999999999	88.00000000000000000000000000000000000	
GAIN COR.	100.001 100.0001 100.0001 100.0001 100.0001 100.0001 100.0001 100.0001 100.0001 100.0001 100.0001 100.0001 100.0001	10.008451 10.008451 10.10174 10.15070 10.20886 10.22986	100.2249990000000000000000000000000000000	100.0000000000000000000000000000000000	
VEL.CIFF.	-1	111211 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 1 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	
. MCD . VEL.	11.00000000000000000000000000000000000	-10802 -2862 -2862 -1082	1	-11.08290 -2.177149 -2.19580 -2.146851 -2.19580 -2.19580 -2.19580 -2.19580 -2.19580 -2.19580 -2.19580 -2.19580 -2.19580 -2.19580	23 b
SYS.VEL.	10000000000000000000000000000000000000	-11- 2057222 205722 20572	11.500702 91.6570702 -4.107070707070707070707070707070707070707	-11.65724 -9.39325 -9.39325 -1.3666 -1.46445 -1.28834	Figure
POS.DIFF.	20000000000000000000000000000000000000	- 1 - 1 - 2 - 1 - 1 - 2 - 2 - 2 - 2 - 2		11	
MOD. POS.	3.000000 11.524083 11.524083 10.752960 10.74366 9.741366 9.741366	10.02388 -1.2.002388 -1.2.0023323 -1.2.0023333 -1.3.003333 -1.3.003333 -1.3.00333 -1.3.00333 -1.3.00333 -1.3.00333 -1.3.00333 -1.3.00333 -1.3.00333 -1.3.00333 -1.3.00333 -1.3.00333 -1.3.00333 -1.3.0033 -1.3.0033 -1.3.0033 -1.3.0033 -1.3.0033 -1.3.0033 -1.3.0033 -1.3.0033 -1.3.0033 -1.3.0033 -1.3.0033 -1.3.0033 -1.3.0033 -1.3.003 -1.003 -1.3.003 -1.3.003 -1.3.003 -1.3.003 -1.3.003 -1.3.003 -1.3.00	-10.07414 -3.10828 -13.10828 -13.17807 -11.40893 9.23581 9.51394 9.513981	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
SYS.POS.	13.000000000000000000000000000000000000	10.32668 -17.9689222 -17.198832 -17.198832 -10.22477 -10.22477 -10.22603 -10.22603	-10.6580 171.06580 177.06580 177.06580 10.0272580 10.04680 10.04680	10.055964 -117.3105186 -17.3105186 -17.310537 -18.31559 -10.03946	
TIME	000000000 0000000000 00000000000000000	000000000 0000000000000000000000000000	000000000 000000000 004000000000000000	000000000 000000000 000000000000000000	

Digital Computer Numewical Dutint (con't)

					1-1-1-1	1 - 1 - 1		
uc	Identificeti	for Two Faraneter J	al Output	er Graphic	tal Computer	Digital		60-
		24a	F13ure 24					and the second second
	- 1			and the second of	1		1	4
		-015	1				1.10	
		-1						
		-210						
		-902						67-
010		-005			0110			002
		888	1					200
					5	YSTEM OUTPU	·	
TUSTUC	ON FIGOR	(s + 3)	120(100) s(s + 100)	G(e)	And the state of t			00
			<u> </u>	Syste				and the state of t
		(2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	= 10(10 - m s(s + 10 +	(s)D				016
			F. 11	The state of the s				
		012	· .					015

Ontont for Two Parameter Identification	Digital Computer Graphical Output	
9		1
-802	302	9
T.L.T. (Sec.)	TIME (sec-)	
005 000 005 010 015 (000 005 010 015	-8005
080		
0		
3002	7,2,5	
		5
E		193
		Œ3
$= \frac{1}{8(8 + 10 + m_e)}$		-68 ITAD
)
		-
980		
		3
800	808	
$(10 + m_c)$	$(10 - m_c)$	
> ~≺	Output Adaptive Loop	
\$ 1.0		910
		1 - 4
0.12	12	2

Digital 35mputer Graphical Sutput for Two Parameter Identification

The third configuration examined was that for the following model open loop transfer function:

$$G(s) = \frac{10,000}{s (s + 100 + m_c) (s + 10 + m_c)}$$

with control system open loop transfer functions of:

$$G(s) = \frac{10,000}{s (s + 150) (s + 15)}$$

and

$$G(s) = \frac{10,000}{s (s + 75) (s + 7.5)}$$

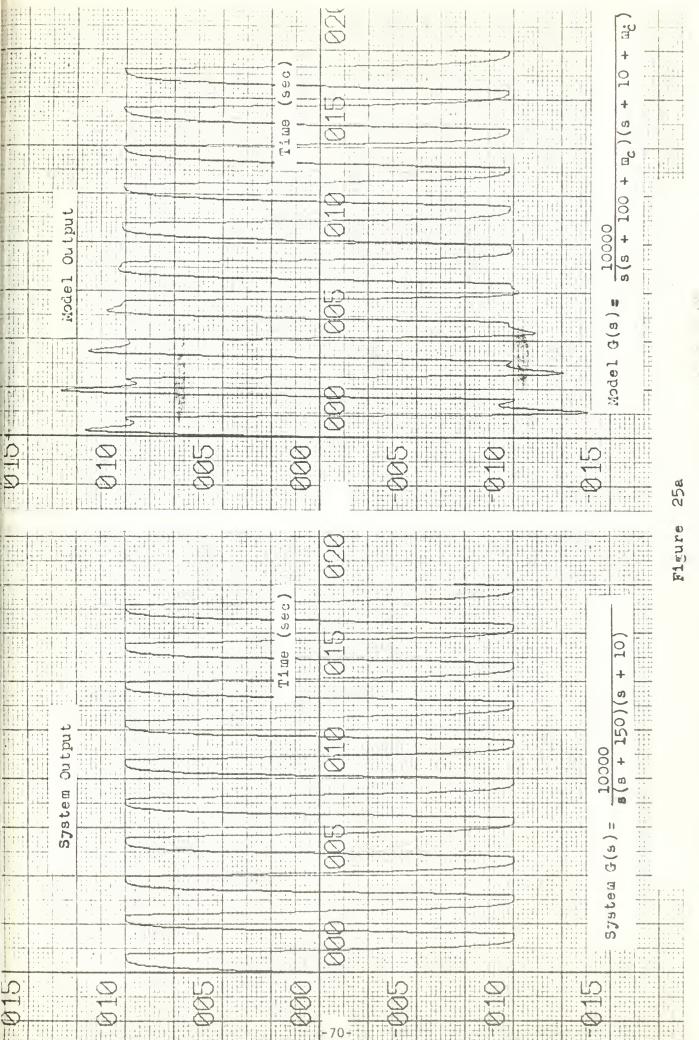

The equations were formulated in the manner of Fig. 20, except that the adaptive loops each utilized one filter and one integrator instead of the two filters previously detailed. Satisfactory results were obtained. Fig. 25 presents sample results from the investigation of equation 5.7, and Table IV presents the root identification achieved.

Table IIIB

DIGITAL COMPUTATION CHARACTERISTIC EQUATION ROOTS

TWO UNCERTAIN POLES

	Control System	Model as Corrected
Equation 5.7	- 7.25 <u>+</u> j 3.72 - 150.49	-7.87 + j 2.1 -150.49
Equation 5.8	- 2.81 <u>+</u> j 11.05 - 76.87	-3.45 + j 11.05 - 74.56

Digital Computer Graphical Output for Integration Angabiave Loops

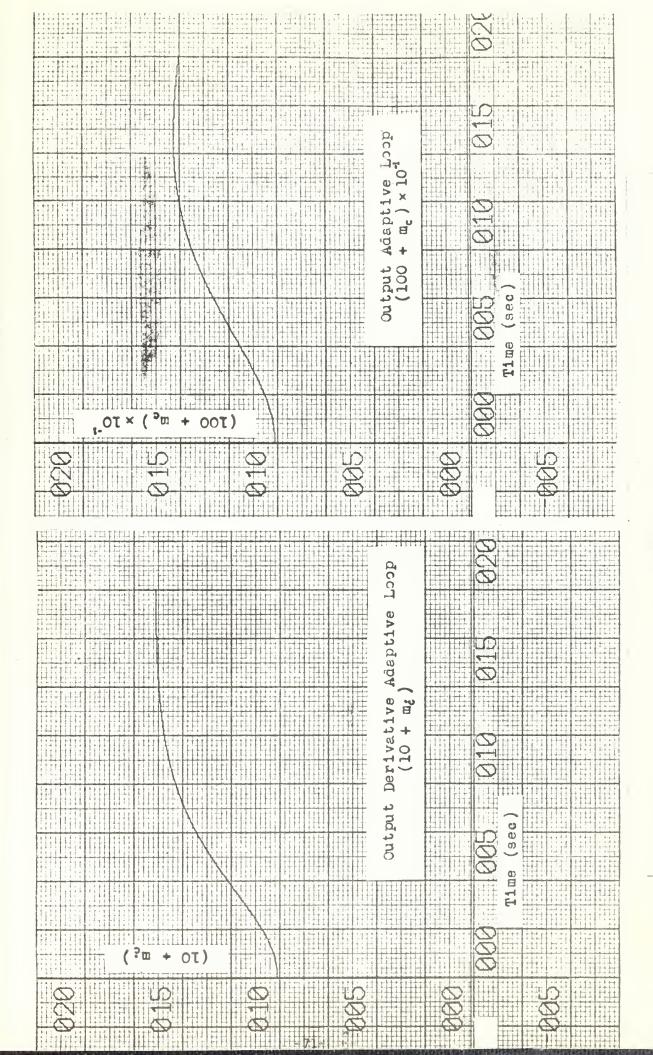


Figure 25b

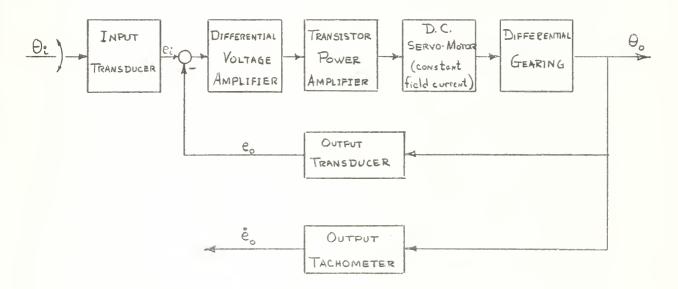
Digital Computer Graphical Output for Integration in Adaptive Loops

Chapter VI

ACTUAL SERVOMECHANISM IDENTIFICATION

Introduction

The previous discussion and the data in Table I and Table II indicate that the identified location of the roots of an operating system is the function of many variables. The type of model and the proximity of the model equation roots to the roots of the equation of the operating system are obviously factors of importance in this identification. With this point in mind, it is suggested that the following steps be followed in the process of identifying an actual system.


- Analyze system operating factors to enable determination of open and closed loop transfer functions.
- Determine which values in the open loop transfer function are questionable.
- Utilize operational amplifiers or an analog computer to prepare the dynamic model and the adaptive loops.
- 4 Scale the model input and outputs to the estimated corresponding values of the system.
- 5. Set indicated adaptive loop polarities to adapt the model to the undetermined or questionable values in the system.
- 6. Adjust gain of adaptive loop to obtain satisfactory operation
- 7. Calculate the transfer function of loop corrected model, scale a new model to these functions and repeat operation to generate better conformance or to confirm values previously attained.

A position servomechanism was used to illustrate the applicability of the model modulation techniques to an actual operating system.

The servo used was one developed for use in instructional laboratories by Professor J. R. Ward of the U. S. Naval Postgraduate School, and is partially described in Ref. 6. The full description and details of the operation of this system are on file at this school.

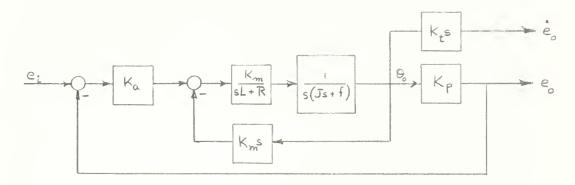
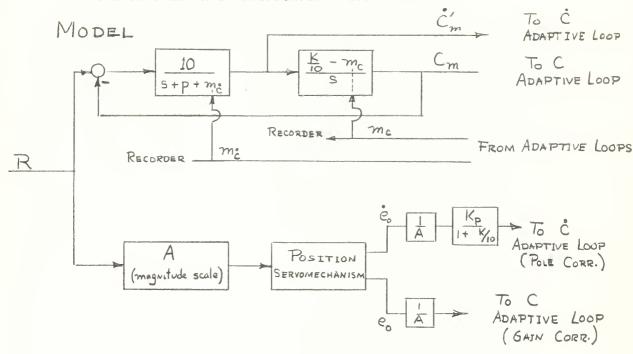

Fig. 26 presents a block diagram of the system. This representation shows that the servomechanism may be considered as a gear-head system. Thus the use of this identification method conforms to the stated requirement of parallel model operation.

Fig. 26
POSITION SERVOMECHANISM

Analysis of this mechanism resulted in the transfer function diagram of Fig 27.

Fig. 27
POSITION SERVOMECHANISM BLOCK DIAGRAM

The approximate parameter values in the system were determined. The magnitude of inductance (L) was such that the approximation L \rightarrow 0 was made. The open loop transfer function was then:


$$\frac{e_o}{\mathcal{E}} = G(s) = \frac{\frac{K_a K_p K_m}{RJ}}{s\left(s + \frac{Rf + K_m^2}{RJ}\right)} = \frac{K_a K_p K_m}{s\left(s + p\right)}$$
 6 1

The value of friction(f) was difficult to evaluate because of the expected non-linearity of friction in a d.c. motor. A nominal value was chosen to represent the viscous friction, while coulomb friction effects were ignored. It was further assumed that the open loop gain was questionable. As a first estimate it was assumed that the open loop transfer function was:

$$G(s) = \frac{k}{s(s+p)} \approx \frac{400}{s(s+8)}$$
 6.2

Fig. 28 presents the control system-model-adaptive loop block diagram.

Fig. 28
SERVOMECHANISM IDENTIFICATION BLOCK DIAGRAM

The actual model and adaptive loop analog computer schematic was that detailed in Fig. 15, while the scaling factors were achieved through cascaded operational amplifiers to assure correct polarity. The servomechanism and the model were driven by a square wave of one cycle per second. Table IV presents the results of four tests made first to bracket, then to closely approximate the open loop transfer function. Fig. 29 presents the results of the final run listed in Table IV. One the basis of these results the transfer function of this servomechanism was estimated to be:

$$\frac{e_o(s)}{e_i(s)} = \frac{625}{s^2 + 10.15 s + 625}$$
 6.3

These results compare favorably with information derived from other sources. Calculated results derived for careful component analysis

Table IV

POSITION SERVOMECHANISM CHARACTERISTIC EQUATION IDENTIFICATION

OPEN LOOP TRANSFER FUNCTION

SYSTEM DYNAMIC EQUATION

Model Model	Corrected Model	Identified Roots
$\frac{10 (40-m_c)}{s (s+8+m_c)}$	574 s (s+9.66)	$-4.83 \pm j = 23.45$ $\zeta = .201 \omega_n = 24$
$\frac{10 (70-m_c)}{s (s+10+m_c)}$	652 s (s+10.15)	-5.075 + j 25 $\zeta = .204 \omega_n = 25.55$
$\frac{10 (55-m_c)}{s (s+10+m_c)}$	622 s (s+10.24)	$-5.12 \pm j 24.2$ $\zeta = .206 \omega_n = 24.95$
10 (60-m _c) s (s+10+m _c)	625 s (s+10.15)	$-5.075 \pm j 24.4$ $\zeta = .208 \omega_n = 25$

indicated a closed loop transfer function of

$$\frac{e_{o}(s)}{e_{i}(s)} = \frac{590}{s^{2} + (12.s \pm 1.s)s + 590}$$

while various open loop frequency response tests indicated the closed loop response to be:

$$\frac{e_{\circ}(s)}{e_{\circ}(s)} = \frac{565 \pm 70}{s^2 + (10 \pm 1)s + 565 \pm 70}$$
6.5

In view of the non-linearities involved in a d.c. servo motor it was felt that these model identified roots represented a successful illustration of the validity of the method.

Discussion

These servomechanism tests confirmed that the model modulation method could be successfully applied to obtain the governing operating equations of a servomechanism. Beyond this the tests emphasized the necessity of continuous excitation of the control system for successful model adaptation. For a linear control system the model modulation adaptation will operate only while the servo is undergoing excitated or active response to an input signal. It would be expected that the correction or adaptive signal would be generated in response to a step for a period equal to the settling time of the system. Beyond the settling time, with no excitation response operation to generate error, the time constants of the adaptive filter network will allow dissipation of the adaptive signal magnitude. The analog computer simulations detailed in this chapter illustrate this operation of the

Figure 29a

-78-

Servomechenism Identification

Floure 296

Servomechanism Identification



Figure 29 c

Servomechanism Identification

			71111	14			1		11	,	11:	11
				7 14 1:			1					
									- 1			
						+					E- 00	
			1. 11									
									4		-= '}	-
	1				: 1 1 1 1 1 1 1 1 1 1							
							j , i				: :!)	
						Fin 11.				28	: : 1	-
												, .
		2-0							111			1
		602				11.11		H				#
		A				HH				24		
		3 - 0	-1					114				
												1 1
						Hilli			411	11.,		
								ri-t	11.	20		-11
			0	2-1					:T []	2U		H
												7 1
											Ju	113
										7 1.1		771
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1					1	1:11	16		
	Fig. 30									+11		i Lhi
ACTUAL SERVOMEX	CHANISM IDENT	IFICATION					‡ 1: - 1: -		F 1			111
LOCATION OF ID	ENTIFIED DOMI	NANT ROOTS										
Values Tal	ken From Table	e IV								12		Irti
								H			11 31	40. 41
and any and a sure	Pind Dominont		7				Americani)			
△, Identi	ried Dominant	Root							1 : .			
On Estima												4
	ted Dominant									А		
O, Estima	ted Dominant									8		
On Estima	ted Dominant	Root								4		
On Estima	ted Dominant	Root										
On Estima	ted Dominant	Root										
O Estima	ted Dominant	Root										
O, Estima	ted Dominant	Root								4		
On Estima	ted Dominant	Root										
On Estima	ted Dominant	Root								4		
On Estima	ted Dominant	Root								4		
On Estima	ted Dominant	Root								4		
On Estimation	ted Dominant	Root	4							4		
On Estima	ted Dominant	Root								4		

adaptive loop. For the analog tests the general input frequency of the square wave was 0.5 cps. The average settling time for the second order model was $\tau \cong 4/\delta \omega_n \cong 1.0$ sec, and the bandwidth was $f \cong 1.9$ cps. When tests were run with systems with small zeta, lower input frequencies would achieve successful adaptation. In all cases, successful operation was attained with frequencies which were as high as the bandwidth frequency.

In the case of the operating servo, the non-linearities of the friction caused a faster damping than the linear interpolation would indicate. For this system, the adaptation proceeded successfully when the driving square wave frequency allowed limited oscillation per step. This in effect was a partial masking of the non-linearity through testing techniques.

These situations emphasize the limitation of control system excitation in the use of the model modulation method. It is obvious that this limitation exists for both system adaptation and for system identification through model adaptation. A potential solution of this problem might be found through investigation into utilization of signal identification circuits. This signal identification might be applied to the output of the control system to control the operation of the adaptive circuit. This identifier could allow the adaptive circuit to operate while the control system would be underdoing oscillatory or excited response. When this control system response became quiescent, the identifier could place the adaptive loop into a hold state with a constant level of output maintained to maintain

the adaptation until such time as the control system would be again activated. Additionally, it is expected that the adaptive loop elements would be synthesized through the use of operational amplifiers. Since these are magnitude sensitive, another role of the signal identifier would be to hold adaptive loop operation when signal magnitude became excessive.

The techniques of sampled-data control systems offer attractive possibilities for circuits to fulfill these requirements. Hybrid digital-analog circuits might also be investigated. In any case, these techniques warrant additional investigation.

Chapter VII

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

It is concluded from the results of this investigation that the identification of the characteristic equation roots of a control system by model adaptation through model modulation is a valid technique. The technique is subject to operating restrictions as follows:

- The control system must be linear or be subjected to operating non-linearities of minor magnitude.
- 2. The open loop transfer function must have but one or two parameters whose magnitude is uncertain.
- 3. The additional parameters of the open loop transfer function must be known or be of sufficient magnitude to be inconsequential.
- 4. The control system must be undergoing active operation in response to an input signal.

It is further concluded that:

1. The roots of the characteristic equation of a control system may be identified with a high degree of accuracy. During these tests, these dominant roots were identified to within an average error of 2.2% of the undamped natural frequency and to within an average error of 4.76% of the complex phase angle.

When the order of the characteristic equation is unknown, second order dominant mode approximations will yield consistent results which are valid in the approximation.

Recommendations

The results of this investigation indicate that there are certain areas of interest which warrant further investigation. The first of these is investigation into the stability of the dynamic adaptive loop. The stability limits are subject to various major bounds in loop gain, input signal frequency, and input signal magnitude. Theoretical analysis of these bounds will be extremely difficult, thus analog computer investigation might offer a valid method of investigation.

The second of these would be the investigation of methods to remove the necessity of a continual excited response from the control system. Certain suggestions have been made in the text which might be applied to achieve this end.

The third suggested area of investigation is in the identification of control system operation subject to known non-linearities.

REFERENCES

- Ref. 1 Mishkin, Eli, and Braun, Ludwig, Jr., ADAPTIVE CONTROL SYSTEMS, 1961, McGraw-Hill Book Company, Inc., New York
- Ref. 2 Chang, Sheldon, S. L., SYNTHESIS OF OPTIMUM CONTROL SYSTEMS, 1961, McGraw-Hill Book Company, Inc., New York
- Ref. 3 A Parameter-Perturbation Adaptive Control System, McGrath, R. J., Rajaraman, V., Rideout, V. C., Transactions I.R E. Vol. AC7, May 1961.
- Ref. 4 Theory of a Two Parameter Adaptive Control System, Rajaraman, V., Transactions I.R.E., Vol. AC7-#4, July, 1962.
- Ref. 5 A Modulation Method for Model Reference Adaptive Control Systems, Dorf, R. C., and Byers, W. A., Proceedings, IEEE International Convention Record, to be published July 1963.
- Ref. 6 An Instructional Servomechanisms Laboratory, Ward, J. R., I.R.E. Transactions on Education, Vol E-5, March 1962.

thesD732
Control system identification through mo

3 2768 002 00671 0
DUDLEY KNOX LIBRARY